890 resultados para Different Muscle Lengths


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PPV random derivates were synthesized and characterized. Polymer light emitting diodes (PLEDs) were assembled using the random copolymers as emissive layer and showed EL in the blue-green region in function of the method of preparation. The increase in the average conjugation degree in the polymer chain led to the reduction of the turn-on voltage of the device. The addition of Alq3 as ETL increased tenfold the luminescence efficiency. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single grain, (RE)BCO bulk superconductors in large or complicated geometries are required for a variety of potential applications, such as motors and generators and magnetic shielding devices. As a result, top, multi-seeded, melt growth (TMSMG) has been investigated over the past two years in an attempt to enlarge the size of (RE)BCO single grains specifically for such applications. Of these multi-seeding techniques, so-called bridge seeding provides the best alignment of two seeds in a single grain growth process. Here we report, for the first time, the successful growth of YBCO using a special, 45{\deg} - 45{\deg}, arrangement of bridge-seeds. The superconducting properties, including trapped field, of the multi-seeded YBCO grains have been measured for different bridge lengths of the 45{\deg}- 45{\deg} bridge-seeds. The boundaries at the impinging growth front and the growth features of the top, multi-seeded surface and cross-section of the multi-seeded, samples have been analysed using optical microscopy. The results suggest that an impurity-free boundary between the two seeds of each leg of the bridge-seed can form when 45{\deg}- 45{\deg} bridge-seeds are used to enlarge the size of YBCO grains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a muscle contracts it produces vibrations. The origin of these vibrations is not known in detail. The purpose of this study was to determine the mechanism associated with muscle vibrations. Mechanisms which have been proposed in the literature were described as theories (cross-bridge cycling, vibrating string and unfused motor unit theories). Specific predictions were derived from each theory, and tested in three conceptually different studies. In the first study, the influence of recruitment strategies of motor units (MUs) on the vibromyographic (VMG) signal was studied in the in-situ cat soleus using electrical stimulation of the soleus nerve. VMG signals increased with increasing recruitment and decreased with increasing firing rates of MUs. Similar results were obtained for the human rectus femoris (RF) muscle using percutaneous electrical stimulation of the femoral nerve. The influence of MU activation on muscle vibrations was studied in RF by analyzing VMG signals at different percentages (0-100%) of the maximal voluntary contraction (MVC). In our second study, we tested the effects of changing the material properties of the in-situ cat soleus (through muscle length changes) on the VMG signal. The magnitude of the VMG signal was higher for intermediate muscle lengths compared to the longest and the shortest muscle lengths. The decreased magnitude of the VMG signal at the longest and at the shortest muscle lengths was associated with increased passive stiffness and with decreased force transients during unfused contractions, respectively. In the third study, the effect of fatigue on muscle vibrations was studied in human RF and vastus lateralis (VL) musc1es during isometric voluntary contractions at a leveI of 70% MVC. A decrease in the VMG signal magnitude was observed in RF (presumably due to derecruitment of MUs) and an increase in VL (probably related to the enhancement of physiological tremor, which may have occurred predorninantly in a mediolateral direction) with fatigue. The unfused MU theory, which is based on the idea that force transients produced by MUs during unfused tetanic contraction is the mechanism for muscle vibrations, was supported by the results obtained in the above three studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoluminescence (PL), electroluminescence (EL) and photoconductivity (PC) of poly[(2,5-dimethoxy-p-phenylene) vinylene] (DMPPV) of varying conjugation length were studied. Thin film devices of the DMPPV with different conjugation lengths, as the active medium, were prepared. The PL emission spectra revealed the radiative decay of the singlet excitons with peak values corresponding to energies below the absorption onset. The PL. emission spectra of the copolymer films also revealed vibronic features, which get well resolved upon cooling to 80K, The devices exhibit light emitting diode (LED) behavior; the I-V curves and EL spectra are compared in these DMPPV samples having different conjugation lengths. The PC studies reveal subtle features, which can be attributed to the optically generated excitations in the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Older adults use a different muscle strategy to cope with postural instability, in which they ‘co-contract’ the muscles around the ankle joint. It has been suggested that this is a compensatory response to age-related proprioceptive decline however this view has never been assessed directly. The current study investigated the association between proprioceptive acuity and muscle co-contraction in older adults. We compared muscle activity, by recording surface EMG from the bilateral tibalis anterior and gastrocnemius medialis muscles, in young (aged 18-34) and older adults (aged 65-82) during postural assessment on a fixed and sway-referenced surface at age-equivalent levels of sway. We performed correlations between muscle activity and proprioceptive acuity, which was assessed using an active contralateral matching task. Despite successfully inducing similar levels of sway in the two age groups, older adults still showed higher muscle co-contraction. A stepwise regression analysis showed that proprioceptive acuity measured using variable error was the best predictor of muscle co-contraction in older adults. However, despite suggestions from previous research, proprioceptive error and muscle co-contraction were negatively correlated in older adults, suggesting that better proprioceptive acuity predicts more co-contraction. Overall, these results suggest that although muscle co-contraction may be an age-specific strategy used by older adults, it is not to compensate for age-related proprioceptive deficits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the behaviour of very high strength (VHS) circular steel tubes strengthened by carbon fibre reinforced polymer (CFRP) and subjected to axial tension. A series of tests were conducted with different bond lengths and number of layers. The distribution of strain through the thickness of CFRP layers and along CFRP bond length was studied. The strain was found to generally decrease along the CFRP bond length far from the joint. The strain through the thickness of the CFRP layers was also found to decrease from bottom to top layer. The effective bond length for high modulus CFRP was established. Finally empirical models were developed to estimate the maximum load for a given CFRP arrangement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Hamstring strain injuries (HSI) are prevalent in sport and re-injury rates have been high for many years. Maladaptation following HSI are implicated in injury recurrence however nervous system function following HSI has received little attention. Aim: To determine if recreational athletes with a history of unilateral HSI, who have returned to training and competition, will exhibit lower levels of voluntary activation (VA) and median power frequency (MPF) in the previously injured limb compared to the uninjured limb at long muscle lengths. Methods: Twenty-eight recreational athletes were recruited. Of these, 13 athletes had a history of unilateral HSI and 15 had no history of HSI. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during concentric and eccentric contractions at ± 180 and ± 60deg/s. Results: The previously injured limb was weaker at all contraction speeds compared to the uninjured limb (+180deg/s mean difference(MD) = 9.3Nm, p = 0.0036; +60deg/s MD = 14.0Nm, p = 0.0013; -60deg/s MD = 18.3Nm, p = 0.0007; -180deg/s MD = 20.5Nm, p = 0.0007) whilst VA was only lower in the biceps femoris long head during eccentric contractions (-60deg/s MD = 0.13, p = 0.0025; -180deg/s MD = 0.13, p = 0.0003). There were no between limb differences in medial hamstring VA or MPF from either biceps femoris long head or medial hamstrings in the injured group. The uninjured group showed no between limb differences with any of the tested variables. Conclusion: Previously injured hamstrings were weaker than the contralateral uninjured hamstring at all tested speeds and contraction modes. During eccentric contractions biceps femoris long head VA was lower in the previously injured limb suggesting neural control of biceps femoris long head may be altered following HSI. Current rehabilitation practices have been unsuccessful in restoring strength and VA following HSI. Restoration of these markers should be considered when determining the success of rehabilitation from HSI. Further investigations are required to elucidate the full impact of lower levels of biceps femoris long head VA following HSI on rehabilitation outcomes and re-injury risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.