943 resultados para Data envelopment analysis (DEA).
Resumo:
This guide introduces Data Envelopment Analysis (DEA), a performance measurement technique, in such a way as to be appropriate to decision makers with little or no background in economics and operational research. The use of mathematics is kept to a minimum. This guide therefore adopts a strong practical approach in order to allow decision makers to conduct their own efficiency analysis and to easily interpret results. DEA helps decision makers for the following reasons: - By calculating an efficiency score, it indicates if a firm is efficient or has capacity for improvement. - By setting target values for input and output, it calculates how much input must be decreased or output increased in order to become efficient. - By identifying the nature of returns to scale, it indicates if a firm has to decrease or increase its scale (or size) in order to minimize the average cost. - By identifying a set of benchmarks, it specifies which other firms' processes need to be analysed in order to improve its own practices.
Resumo:
Ce guide présente la méthode Data Envelopment Analysis (DEA), une méthode d'évaluation de la performance . Il est destiné aux responsables d'organisations publiques qui ne sont pas familiers avec les notions d'optimisation mathématique, autrement dit de recherche opérationnelle. L'utilisation des mathématiques est par conséquent réduite au minimum. Ce guide est fortement orienté vers la pratique. Il permet aux décideurs de réaliser leurs propres analyses d'efficience et d'interpréter facilement les résultats obtenus. La méthode DEA est un outil d'analyse et d'aide à la décision dans les domaines suivants : - en calculant un score d'efficience, elle indique si une organisation dispose d'une marge d'amélioration ; - en fixant des valeurs-cibles, elle indique de combien les inputs doivent être réduits et les outputs augmentés pour qu'une organisation devienne efficiente ; - en identifiant le type de rendements d'échelle, elle indique si une organisation doit augmenter ou au contraire réduire sa taille pour minimiser son coût moyen de production ; - en identifiant les pairs de référence, elle désigne quelles organisations disposent des best practice à analyser.
Resumo:
The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term
Resumo:
The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
Performance indicators in the public sector have often been criticised for being inadequate and not conducive to analysing efficiency. The main objective of this study is to use data envelopment analysis (DEA) to examine the relative efficiency of Australian universities. Three performance models are developed, namely, overall performance, performance on delivery of educational services, and performance on fee-paying enrolments. The findings based on 1995 data show that the university sector was performing well on technical and scale efficiency but there was room for improving performance on fee-paying enrolments. There were also small slacks in input utilisation. More universities were operating at decreasing returns to scale, indicating a potential to downsize. DEA helps in identifying the reference sets for inefficient institutions and objectively determines productivity improvements. As such, it can be a valuable benchmarking tool for educational administrators and assist in more efficient allocation of scarce resources. In the absence of market mechanisms to price educational outputs, which renders traditional production or cost functions inappropriate, universities are particularly obliged to seek alternative efficiency analysis methods such as DEA.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Atualmente a tendência dos negócios leva a cadeias de abastecimento complexas e dinâmicas, que consequentemente levanta questões relativas ao aumento do risco de fornecimento em torno dessas mesmas cadeias; pelo que existe cada vez mais uma necessidade dos gestores identificarem e gerirem o risco de um modo mais diversificado. Associado às cadeias de abastecimento estão os fornecedores. A maioria dos riscos relativos a estes, está incluída no contexto de risco de fornecimento, resultando assim numa problemática de seleção e avaliação de fornecedores. Riscos como baixa qualidade, atrasos na entrega, falha ou interrupção de fornecimento, são exemplos de fatores de risco associados. Neste contexto, um dos maiores desafios para as organizações atualmente é trabalharem com os melhores fornecedores do mercado, procurando garantir a estabilidade em termos de fornecimento, com as melhores condições possíveis, quer a nível de preço, qualidade, entre outros, exigindo cada vez mais relações comerciais eficientes com os fornecedores. Assim, este trabalho tem como objetivo o desenvolvimento de um modelo baseado no método Data Envelopment Analysis (DEA), que permite às organizações avaliar e melhorar a eficiência das suas relações comerciais na gestão de risco de fornecimento nas suas cadeias de abastecimento. Como tal, o modelo proposto é divido em dois casos, que diferem pela origem da obtenção dos seus valores. Ou seja, num dos casos é aplicada uma avaliação externa à organização, e no outro é utilizada uma avaliação interna, o que permitirá discutir a sua utilização. Segundo o modelo proposto verificou-se que a eficiência média foi de 93% no caso I e 94% no caso II. Concluindo-se ainda ambos os casos necessitam de melhorias nos fornecimentos ao nível de: Qualidade, Logística e Tecnologia, ou seja, melhorar a qualidade dos serviços prestados, diminuir os seus prazos de execução dos serviços/fornecimento de material e aumento do conhecimento tecnológico.
Resumo:
This thesis examines the application of data envelopment analysis as an equity portfolio selection criterion in the Finnish stock market during period 2001-2011. A sample of publicly traded firms in the Helsinki Stock Exchange is examined in this thesis. The sample covers the majority of the publicly traded firms in the Helsinki Stock Exchange. Data envelopment analysis is used to determine the efficiency of firms using a set of input and output financial parameters. The set of financial parameters consist of asset utilization, liquidity, capital structure, growth, valuation and profitability measures. The firms are divided into artificial industry categories, because of the industry-specific nature of the input and output parameters. Comparable portfolios are formed inside the industry category according to the efficiency scores given by the DEA and the performance of the portfolios is evaluated with several measures. The empirical evidence of this thesis suggests that with certain limitations, data envelopment analysis can successfully be used as portfolio selection criterion in the Finnish stock market when the portfolios are rebalanced at annual frequency according to the efficiency scores given by the data envelopment analysis. However, when the portfolios were rebalanced every two or three years, the results are mixed and inconclusive.
Resumo:
An appropriate supplier selection and its profound effects on increasing the competitive advantage of companies has been widely discussed in supply chain management (SCM) literature. By raising environmental awareness among companies and industries they attach more importance to sustainable and green activities in selection procedures of raw material providers. The current thesis benefits from data envelopment analysis (DEA) technique to evaluate the relative efficiency of suppliers in the presence of carbon dioxide (CO2) emission for green supplier selection. We incorporate the pollution of suppliers as an undesirable output into DEA. However, to do so, two conventional DEA model problems arise: the lack of the discrimination power among decision making units (DMUs) and flexibility of the inputs and outputs weights. To overcome these limitations, we use multiple criteria DEA (MCDEA) as one alternative. By applying MCDEA the number of suppliers which are identified as efficient will be decreased and will lead to a better ranking and selection of the suppliers. Besides, in order to compare the performance of the suppliers with an ideal supplier, a “virtual” best practice supplier is introduced. The presence of the ideal virtual supplier will also increase the discrimination power of the model for a better ranking of the suppliers. Therefore, a new MCDEA model is proposed to simultaneously handle undesirable outputs and virtual DMU. The developed model is applied for green supplier selection problem. A numerical example illustrates the applicability of the proposed model.
Resumo:
This paper uses an output oriented Data Envelopment Analysis (DEA) measure of technical efficiency to assess the technical efficiencies of the Brazilian banking system. Four approaches to estimation are compared in order to assess the significance of factors affecting inefficiency. These are nonparametric Analysis of Covariance, maximum likelihood using a family of exponential distributions, maximum likelihood using a family of truncated normal distributions, and the normal Tobit model. The sole focus of the paper is on a combined measure of output and the data analyzed refers to the year 2001. The factors of interest in the analysis and likely to affect efficiency are bank nature (multiple and commercial), bank type (credit, business, bursary and retail), bank size (large, medium, small and micro), bank control (private and public), bank origin (domestic and foreign), and non-performing loans. The latter is a measure of bank risk. All quantitative variables, including non-performing loans, are measured on a per employee basis. The best fits to the data are provided by the exponential family and the nonparametric Analysis of Covariance. The significance of a factor however varies according to the model fit although it can be said that there is some agreements between the best models. A highly significant association in all models fitted is observed only for nonperforming loans. The nonparametric Analysis of Covariance is more consistent with the inefficiency median responses observed for the qualitative factors. The findings of the analysis reinforce the significant association of the level of bank inefficiency, measured by DEA residuals, with the risk of bank failure.
Resumo:
The papers aims at considering the issue of relative efficiency measurement in the context of the public sector. In particular, we consider the efficiency measurement approach provided by Data Envelopment Analysis (DEA). The application considered the main Brazilian federal universities for the year of 1994. Given the large number of inputs and outputs, this paper advances the idea of using factor analysis to explore common dimensions in the data set. Such procedure made possible a meaningful application of DEA, which finally provided a set of efficiency scores for the universities considered .
Resumo:
Given the importance the concept of productive efficiency has on analyzing the human development process, which is complex and multidimensional, this study conducts a literature review on the research works that have used the data envelopment analysis (DEA) to measure and analyze the development process. Therefore, we researched the databases of Scopus and Web of Science, and considered the following analysis dimensions: bibliometrics, scope, DEA models and extensions used, interfaces with other techniques, units analyzed and depth of analysis. In addition to a brief summary, the main gaps in each analysis dimension were assessed, which may serve to guide future researches. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A problem frequently encountered in Data Envelopment Analysis (DEA) is that the total number of inputs and outputs included tend to be too many relative to the sample size. One way to counter this problem is to combine several inputs (or outputs) into (meaningful) aggregate variables reducing thereby the dimension of the input (or output) vector. A direct effect of input aggregation is to reduce the number of constraints. This, in its turn, alters the optimal value of the objective function. In this paper, we show how a statistical test proposed by Banker (1993) may be applied to test the validity of a specific way of aggregating several inputs. An empirical application using data from Indian manufacturing for the year 2002-03 is included as an example of the proposed test.