888 resultados para Data Structures, Cryptology and Information Theory
Resumo:
We offer an exposition of Boneh, Boyen, and Goh’s “uber-assumption” family for analyzing the validity and strength of pairing assumptions in the generic-group model, and augment the original BBG framework with a few simple but useful extensions.
Resumo:
We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.
Resumo:
Mandatory data breach notification laws are a novel and potentially important legal instrument regarding organisational protection of personal information. These laws require organisations that have suffered a data breach involving personal information to notify those persons that may be affected, and potentially government authorities, about the breach. The Australian Law Reform Commission (ALRC) has proposed the creation of a mandatory data breach notification scheme, implemented via amendments to the Privacy Act 1988 (Cth). However, the conceptual differences between data breach notification law and information privacy law are such that it is questionable whether a data breach notification scheme can be solely implemented via an information privacy law. Accordingly, this thesis by publications investigated, through six journal articles, the extent to which data breach notification law was conceptually and operationally compatible with information privacy law. The assessment of compatibility began with the identification of key issues related to data breach notification law. The first article, Stakeholder Perspectives Regarding the Mandatory Notification of Australian Data Breaches started this stage of the research which concluded in the second article, The Mandatory Notification of Data Breaches: Issues Arising for Australian and EU Legal Developments (‘Mandatory Notification‘). A key issue that emerged was whether data breach notification was itself an information privacy issue. This notion guided the remaining research and focused attention towards the next stage of research, an examination of the conceptual and operational foundations of both laws. The second article, Mandatory Notification and the third article, Encryption Safe Harbours and Data Breach Notification Laws did so from the perspective of data breach notification law. The fourth article, The Conceptual Basis of Personal Information in Australian Privacy Law and the fifth article, Privacy Invasive Geo-Mashups: Privacy 2.0 and the Limits of First Generation Information Privacy Laws did so for information privacy law. The final article, Contextualizing the Tensions and Weaknesses of Information Privacy and Data Breach Notification Laws synthesised previous research findings within the framework of contextualisation, principally developed by Nissenbaum. The examination of conceptual and operational foundations revealed tensions between both laws and shared weaknesses within both laws. First, the distinction between sectoral and comprehensive information privacy legal regimes was important as it shaped the development of US data breach notification laws and their subsequent implementable scope in other jurisdictions. Second, the sectoral versus comprehensive distinction produced different emphases in relation to data breach notification thus leading to different forms of remedy. The prime example is the distinction between market-based initiatives found in US data breach notification laws compared to rights-based protections found in the EU and Australia. Third, both laws are predicated on the regulation of personal information exchange processes even though both laws regulate this process from different perspectives, namely, a context independent or context dependent approach. Fourth, both laws have limited notions of harm that is further constrained by restrictive accountability frameworks. The findings of the research suggest that data breach notification is more compatible with information privacy law in some respects than others. Apparent compatibilities clearly exist as both laws have an interest in the protection of personal information. However, this thesis revealed that ostensible similarities are founded on some significant differences. Data breach notification law is either a comprehensive facet to a sectoral approach or a sectoral adjunct to a comprehensive regime. However, whilst there are fundamental differences between both laws they are not so great to make them incompatible with each other. The similarities between both laws are sufficient to forge compatibilities but it is likely that the distinctions between them will produce anomalies particularly if both laws are applied from a perspective that negates contextualisation.
Resumo:
The analytic advantages of central concepts from linguistics and information theory, and the analogies demonstrated between them, for understanding patterns of retrieval from full-text indexes to documents are developed. The interaction between the syntagm and the paradigm in computational operations on written language in indexing, searching, and retrieval is used to account for transformations of the signified or meaning between documents and their representation and between queries and documents retrieved. Characteristics of the message, and messages for selection for written language, are brought to explain the relative frequency of occurrence of words and multiple word sequences in documents. The examples given in the companion article are revisited and a fuller example introduced. The signified of the sequence stood for, the term classically used in the definitions of the sign, as something standing for something else, can itself change rapidly according to its syntagm. A greater than ordinary discourse understanding of patterns in retrieval is obtained.
Resumo:
An analogy is established between the syntagm and paradigm from Saussurean linguistics and the message and messages for selection from the information theory initiated by Claude Shannon. The analogy is pursued both as an end itself and for its analytic value in understanding patterns of retrieval from full text systems. The multivalency of individual words when isolated from their syntagm is contrasted with the relative stability of meaning of multi-word sequences, when searching ordinary written discourse. The syntagm is understood as the linear sequence of oral and written language. Saussureâ??s understanding of the word, as a unit which compels recognition by the mind, is endorsed, although not regarded as final. The lesser multivalency of multi-word sequences is understood as the greater determination of signification by the extended syntagm. The paradigm is primarily understood as the network of associations a word acquires when considered apart from the syntagm. The restriction of information theory to expression or signals, and its focus on the combinatorial aspects of the message, is sustained. The message in the model of communication in information theory can include sequences of written language. Shannonâ??s understanding of the written word, as a cohesive group of letters, with strong internal statistical influences, is added to the Saussurean conception. Sequences of more than one word are regarded as weakly correlated concatenations of cohesive units.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
This paper aims to present the use of a learning object (CADILAG), developed to facilitate understanding data structure operations by using visual presentations and animations. The CADILAG allows visualizing the behavior of algorithms usually discussed during Computer Science and Information System courses. For each data structure it is possible visualizing its content and its operation dynamically. Its use was evaluated an the results are presented. © 2012 AISTI.
Resumo:
In this thesis we uncover a new relation which links thermodynamics and information theory. We consider time as a channel and the detailed state of a physical system as a message. As the system evolves with time, ever present noise insures that the "message" is corrupted. Thermodynamic free energy measures the approach of the system toward equilibrium. Information theoretical mutual information measures the loss of memory of initial state. We regard the free energy and the mutual information as operators which map probability distributions over state space to real numbers. In the limit of long times, we show how the free energy operator and the mutual information operator asymptotically attain a very simple relationship to one another. This relationship is founded on the common appearance of entropy in the two operators and on an identity between internal energy and conditional entropy. The use of conditional entropy is what distinguishes our approach from previous efforts to relate thermodynamics and information theory.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
The data structure of an information system can significantly impact the ability of end users to efficiently and effectively retrieve the information they need. This research develops a methodology for evaluating, ex ante, the relative desirability of alternative data structures for end user queries. This research theorizes that the data structure that yields the lowest weighted average complexity for a representative sample of information requests is the most desirable data structure for end user queries. The theory was tested in an experiment that compared queries from two different relational database schemas. As theorized, end users querying the data structure associated with the less complex queries performed better Complexity was measured using three different Halstead metrics. Each of the three metrics provided excellent predictions of end user performance. This research supplies strong evidence that organizations can use complexity metrics to evaluate, ex ante, the desirability of alternate data structures. Organizations can use these evaluations to enhance the efficient and effective retrieval of information by creating data structures that minimize end user query complexity.
Resumo:
This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.