991 resultados para DISCRETE-SCALE-INVARIANCE
Resumo:
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of four phases, for this system: (i) classical nonpersistence, (ii) classical persistence, (iii) log-periodic nonpersistence, and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however, log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
Resumo:
Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the L,vy index in L,vy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discrete scale invariance in the first moment of the propagator, whereas the second order parameter, known as the Hurst exponent, describes the growth of the second moment. We report numerical and analytical results for six critical exponents, which together completely characterize the properties of the transitions. We find that the critical exponents related to the diffusion-superdiffusion transition are identical in the positive feedback and negative feedback branches of the critical line, even though the former leads to classical superdiffusion whereas the latter gives rise to log-periodic superdiffusion.
Resumo:
A non-Markovian one-dimensional random walk model is studied with emphasis on the phase-diagram, showing all the diffusion regimes, along with the exactly determined critical lines. The model, known as the Alzheimer walk, is endowed with memory-controlled diffusion, responsible for the model's long-range correlations, and is characterized by a rich variety of diffusive regimes. The importance of this model is that superdiffusion arises due not to memory per se, but rather also due to loss of memory. The recently reported numerically and analytically estimated values for the Hurst exponent are hereby reviewed. We report the finding of two, previously overlooked, phases, namely, evanescent log-periodic diffusion and log-periodic diffusion with escape, both with Hurst exponent H = 1/2. In the former, the log-periodicity gets damped, whereas in the latter the first moment diverges. These phases further enrich the already intricate phase diagram. The results are discussed in the context of phase transitions, aging phenomena, and symmetry breaking.
Resumo:
Recent studies have shown evidence of log-periodic behavior in non-hierarchical systems. An interesting fact is the emergence of such properties on rupture and breakdown of complex materials and financial failures. These may be examples of systems with self-organized criticality (SOC). In this work we study the detection of discrete scale invariance or log-periodicity. Theoretically showing the effectiveness of methods based on the Fourier Transform of the log-periodicity detection not only with prior knowledge of the critical point before this point as well. Specifically, we studied the Brazilian financial market with the objective of detecting discrete scale invariance in Bovespa (Bolsa de Valores de S˜ao Paulo) index. Some historical series were selected periods in 1999, 2001 and 2008. We report evidence for the detection of possible log-periodicity before breakage, shown its applicability to the study of systems with discrete scale invariance likely in the case of financial crashes, it shows an additional evidence of the possibility of forecasting breakage
Resumo:
The HMAX model has recently been proposed by Riesenhuber & Poggio as a hierarchical model of position- and size-invariant object recognition in visual cortex. It has also turned out to model successfully a number of other properties of the ventral visual stream (the visual pathway thought to be crucial for object recognition in cortex), and particularly of (view-tuned) neurons in macaque inferotemporal cortex, the brain area at the top of the ventral stream. The original modeling study only used ``paperclip'' stimuli, as in the corresponding physiology experiment, and did not explore systematically how model units' invariance properties depended on model parameters. In this study, we aimed at a deeper understanding of the inner workings of HMAX and its performance for various parameter settings and ``natural'' stimulus classes. We examined HMAX responses for different stimulus sizes and positions systematically and found a dependence of model units' responses on stimulus position for which a quantitative description is offered. Interestingly, we find that scale invariance properties of hierarchical neural models are not independent of stimulus class, as opposed to translation invariance, even though both are affine transformations within the image plane.
Resumo:
We consider brightness/contrast-invariant and rotation-discriminating template matching that searches an image to analyze A for a query image Q We propose to use the complex coefficients of the discrete Fourier transform of the radial projections to compute new rotation-invariant local features. These coefficients can be efficiently obtained via FFT. We classify templates in ""stable"" and ""unstable"" ones and argue that any local feature-based template matching may fail to find unstable templates. We extract several stable sub-templates of Q and find them in A by comparing the features. The matchings of the sub-templates are combined using the Hough transform. As the features of A are computed only once, the algorithm can find quickly many different sub-templates in A, and it is Suitable for finding many query images in A, multi-scale searching and partial occlusion-robust template matching. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
By introducing physical outcomes in coalitional games we note that coalitional games and social choice problems are equivalent (implying that so are the theory of implementation and the Nash program). This facilitates the understanding of the role of invariance and randomness in the Nash program. Also, the extent to which mechanisms in the Nash program perform ``real implementation'' is examined.
Resumo:
Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.
Resumo:
In previous empirical and modelling studies of rare species and weeds, evidence of fractal behaviour has been found. We propose that weeds in modern agricultural systems may be managed close to critical population dynamic thresholds, below which their rates of increase will be negative and where scale-invariance may be expected as a consequence. We collected detailed spatial data on five contrasting species over a period of three years in a primarily arable field. Counts in 20×20 cm contiguous quadrats, 225,000 in 1998 and 84,375 thereafter, could be re-structured into a wide range of larger quadrat sizes. These were analysed using three methods based on correlation sum, incidence and conditional incidence. We found non-trivial scale invariance for species occurring at low mean densities and where they were strongly aggregated. The fact that the scale-invariance was not found for widespread species occurring at higher densities suggests that the scaling in agricultural weed populations may, indeed, be related to critical phenomena.
Resumo:
The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005).
Resumo:
Full Text / Article complet
Resumo:
Full Text / Article complet
Resumo:
Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics