945 resultados para DERIVATIVE CYCLIC VOLTABSORPTOMETRY
Resumo:
The heterogeneous electron transfer reaction of hemeproteins including hemoglobin, myoglobin and cytochrome C at Pt mesh electrode adsorbed methylene blue has been investigated. Thin-layer spectroelectrochemical technique was used for observing the electron transfer processes of three kinds of proteins, and the corresponding electrode rate constants were measured.
Resumo:
The electrochemically polymerized azure A film electrode is reported. The resulting film on a platinum electrode surface was analyzed with electron spectroscopy for chemical analysis (ESCA). The heterogeneous electron transfer processes of hemoglobin at the polymerized azure A film electrode have been investigated using in situ UV-visible spectroelectrochemistry. The formal potential (E-degrees') and electron transfer number (n) of hemoglobin were calculated as E = 0.088 V versus NHE (standard deviation +/- 0.5, N = 4) and n = 1.8 (standard deviation +/- 0.5, N = 4). Exhaustive reduction and oxidation electrolysis are achieved in 80 and 380 seconds, respectively, during a potential step between -0.3 and +0.3 V. A formal heterogeneous electron-transfer rate constant (k(sh)) of 3.54(+/- 0.12) X 10(-6) cm/s and a transfer coefficient (alpha) of 0.28(+/- 0.01) were obtained by cyclic voltabsorptometry, which indicated that the poly-azure A film electrode is able to catalyze the direct reduction and oxidation of hemoglobin.
Resumo:
The electrochemically polymerized azure A film electrode was firstly reported in this paper. A quasi-reversible electrode processes of myoglobin with the formal heterogeneous electron transfer rate constant (k(sh)) of 1.73 x 10(-4) cm.s-1 at the polymerized azure A modified electrode have been achieved using in-situ UV-visible spectroelectrochemistry. The adsorption of myoglobin on the polymerized azure A film electrode surface was confirmed by XPS. With simultaneously studying of cyclic voltammetry and in-situ cyclic voltabsorptometry, the attribution of the voltammetry responses of myoglobin at the film electrode has been studied. The mechanism for the heterogeneous electron transfer of myoglobin at the polymerized azure A film modified electrode has been proposed as well.
Resumo:
Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120-gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. Some cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface. We have therefore designed cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cycl, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with similar to 20-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface.
Resumo:
The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
A functionalized fullerene derivative containing a monoaza-18-crown-6 moiety was investigated by facilitated ion (such as Li+, Na+, K+, NH4+, Mg2+, and Ca2+) transfer across the micro-water/nitrobenzene interface supported at the tip of a micropipet. The current responses were detected by cyclic voltammetry and Osteryoung square wave voltammetry, which demonstrated that the facilitated ion transfer does occur by an interfacial complexation-dissociation process. The diffusion coefficient of this compound in nitrobenzene was approximately (5.90 +/- 0.04) x 10(-7) cm(2) s(-1), which is 1 order of magnitude less than other common ionophores due to the large size of the molecule. The selectivity of this molecule toward the metal ions followed the sequence Na+ > Li+ > K+ > NH4+ > Ca2+ similar to Mg2+. In addition, this compound was also easy to form film at the water/nitrobenzene interface to inhibit the simple ion transfer of tetramethylammonium ion. However, the adsorption of this ionophore has less influence on the facilitated metal ion transfer.
Resumo:
The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.
Resumo:
Abstract 2,4-Dinitrophenol was employed with benzyloxy-bis-(diisopropylamino)phosphine to synthesise the cyclic phosphate derivatives of a series of alkane diols (HO–(CH2)n–OH, n=2–6) in good isolated yields. Tetrazole and DNP were compared by 31P NMR spectroscopy for their ability to catalyse the cyclisation at the P(III) stage. Investigation of the phosphate triester stability under various oxidation and chromatographic conditions resulted in the optimisation of the isolation procedures of the chemically unstable cyclic compounds. Conditions for debenzylation were developed to yield the corresponding cyclic phosphodiesters quantitatively. The methodology was further applied to the preparation and isolation of the cyclic phosphate derivative of a carbohydrate.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of a trans-cyclohexanediamine benzimidazole derivative as a hydrogen-bond catalyst for the electrophilic amination of cyclic 1,3-dicarbonyl compounds is herein presented. High yields and enantioselectivities varying from moderate to excellent are generally obtained using mild reaction conditions and as low as 1 mol% of catalyst loading.
Resumo:
The cyclotides constitute a recently discovered family of plant-derived peptides that have the unusual features of a head-to-tail cyclized backbone and a cystine knot core. These features are thought to contribute to their exceptional stability, as qualitatively observed during experiments aimed at sequencing and characterizing early members of the family. However, to date there has been no quantitative study of the thermal, chemical, or enzymatic stability of the cyclotides. In this study, we demonstrate the stability of the prototypic cyclotide kalata B1 to the chaotropic agents 6 M guanidine hydrochloride (GdHCl) and 8 M urea, to temperatures approaching boiling, to acid, and following incubation with a range of proteases, conditions under which most proteins readily unfold. NMR spectroscopy was used to demonstrate the thermal stability, while fluorescence and circular dichroism were used to monitor the chemical stability. Several variants of kalata B1 were also examined, including kalata 132, which has five amino acid substitutions from B1, two acyclic permutants in which the backbone was broken but the cystine knot was retained, and a two-disulfide bond mutant. Together, these allowed determinations of the relative roles of the cystine knot and the circular backbone on the stability of the cyclotides. Addition of a denaturant to kalata B1 or an acyclic permutant did not cause unfolding, but the two-disulfide derivative was less stable, despite having a similar three-dimensional structure. It appears that the cystine knot is more important than the circular backbone in the chemical stability of the cyclotides. Furthermore, the cystine knot of the cyclotides is more stable than those in similar-sized molecules, judging by a comparison with the conotoxin PVIIA. There was no evidence for enzymatic digestion of native kalata B1 as monitored by LC-MS, but the reduced form was susceptible to proteolysis by trypsin, endoproteinase Glu-C, and thermolysin. Fluorescence spectra of kalata B1 in the presence of dithiothreitol, a reducing agent, showed a marked increase in intensity thought to be due to removal of the quenching effect on the Trp residue by the neighboring Cys5-Cys17 disulfide bond. In general, the reduced peptides were significantly more susceptible to chemical or enzymatic breakdown than the oxidized species.
Resumo:
A new safety-catch linker for Fmoc solid-phase peptide synthesis of cyclic peptides is reported. The linear precursors were assembled on a tert-butyl protected catechol derivative using optimized conditions for Fmoc-removal. After activation of the linker using TFA, neutralization of the N-terminal amine induced cyclization with concomitant cleavage from the resin yielding the cyclic peptides in DMF solution. Several constrained cyclic peptides were synthesized in excellent yields and purities. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.