938 resultados para DEGREE OF CONVERSION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The indirect adhesive procedures constitute recently a substantial portion of contemporary esthetic restorative treatments. The resin cements have been used to bond tooth substrate and restorative materials. Due to recently introduction of the self-bonding resin luting cement based on a new monomer, filler and initiation technology has become important to study the degree of conversion of these new materials. In the present work the polymerization reaction and the filler content of dual-cured dental resin cements were studied by means of infra-red spectroscopy (FT-IR) and thermogravimetry (TG). Twenty specimens were made in a metallic mold (8 mm diameter x 1 mm thick) from each of 2 cements, PanaviaA (R) F2.0 (Kuraray) and RelyX (TM) Unicem Applicap (3M/ESPE). Each specimen was cured with blue LED with power density of 500 mW/cm(2) for 30 s. Immediately after curing, 24 and 48 h, and 7 days DC was determined. For each time interval 5 specimens were pulverized, pressed with KBr and analyzed with FT-IR. The TG measurements were performed in Netzsch TG 209 under oxygen atmosphere and heating rate of 10A degrees C/min from 25 to 700A degrees C. A two-way ANOVA showed DC (%) mean values statistically significance differences between two cements (p < 0.05). The Tukey`s test showed no significant difference only for the 24 and 48 h after light irradiation for both resin cements (p > 0.05). The Relx-Y (TM) Unicem mean values were significantly higher than PanaviaA (R) F 2.0. The degree of conversion means values increasing with the storage time and the filler content showed similar for both resin cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different light sources and power densities used on the photoactivation process may provide changes in the degree of conversion (DC%) and temperature ( T) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and T (degrees C) of the microhybrid composite resin (Filtek (TM) Z-250, 3M/ESPE) photoactivated with one argon laser and one LED (light-emitting diode) with different power densities. For the KBr pellet technique, the composite resin was placed into a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated as follows: a continuous argon laser (CW) and LED LCUs with power density values of 100, 400, 700, and 1000 mW/cm(2) for 20 s. The measurements for DC (%) were made in a FTIR spectrometer Bomen ( model MB 102, Quebec, Canada). Spectroscopy ( FTIR) spectra for both uncured and cured samples were analyzed using an accessory of the reflectance diffusion. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm(-1)). For T (degrees C), the samples were created in a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated for 20 s. The thermocouple was attached to the multimeter allowing temperature readings. The DC (%) and T (degrees C) were submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 to 50.0% ( 100 to 1000 mW/cm(2)) for an argon laser and from 41.0 to 49% (100 to 1000 mW/cm(2)) for an LED. The temperature change values varied from 1.1 to 13.1 degrees C (100 to 1000 mW/cm(2)) for an argon laser and from 1.9 to 15.0 degrees C (100 to 1000 mW/cm(2)) for an LED. The power densities showed a significant effect on the degree of conversion and changes the temperature for both light-curing units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The different parameters used for the photoactivation process provide changes in the degree of conversion (DC%) and temperature rise (TR) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and TR of the microhybrid composite resin photoactivated by a new generation LED. For the KBr pellet technique, the composite resin was placed into a metallic mould (1-mm thickness and 4-mm diameter) and photoactivated as follows: continuous LED LCU with different power density values (50-1000 mW/cm(2)). The measurements for the DC (%) were made in a FTIR Spectrometer Bomen (model MB-102, Quebec-Canada). The spectroscopy (FTIR) spectra for both uncured and cured samples were analyzed using an accessory for the diffuse reflectance. The measurements were recorded in the absorbance operating under the following conditions: 32 scans, 4-cm(-1) resolution, and a 300 to 4000-cm(-1) wavelength. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of the absorbance intensities of aliphatic C=C (peak at 1638 cm(-1)) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm-1). For the TR, the samples were made in a metallic mould (2-mm thickness and 4-mm diameter) and photoactivated during 5, 10, and 20 s. The thermocouple was attached to the multimeter to allow the temperature readings. The DC (%) and TR were calculated by the standard technique and submitted to ANOVA and Tukey`s test (p < 0.05). The degree of conversion values varied from 35.0 (+/- 1.3) to 45.0 (+/- 2.4) for 5 s, 45.0 (+/- 1.3) to 55.0 (+/- 2.4) for 10 s, and 47.0 (+/- 1.3) to 52.0 (+/- 2.4) for 20 s. For the TR, the values ranged from 0.3 (+/- 0.01) to 5.4 (+/- 0.11)degrees C for 5 s, from 0.5 (+/- 0.02) to 9.3 (+/- 0.28)degrees C for 10 s, and from 1.0 (+/- 0.06) to 15.0 (+/- 0.95)degrees C for 20 s. The power densities and irradiation times showed a significant effect on the degree of conversion and temperature rise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T(g)) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T(g) and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T(g) and degradation temperature values when compared to continuous method. The Elipar Freelight 2 (TM) LCU showed the lowest T(g) values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2 (TM) LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the degree of conversion and hardness of a dental composite resin Filtek (TM) Z-350 (3M ESPE, Dental Products St. Paul, MN) photo-activated for 20 s of irradiation time with two different light guide tips, metal and polymer, coupled on blue LED Ultraled LCU (Dabi Atlante, SP, Brazil). With the metal light tip, power density was of 352 and with the polymer was of 456 mW/cm(2), respectively. Five samples (4 mm in diameter and 2mm in thickness-ISO 4049), were made for each Group evaluated. The measurements for DC (%) were made in a Nexus-470 FT-IR, Thermo Nicolet, E.U.A. Spectroscopy (FTIR). Spectra for both uncured and cured samples were analyzed using an accessory of reflectance diffuse. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300-4000 cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm(-1)) against internal standard before and after curing of the sample: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements (top and bottom surfaces) were performed in a universal testing machine (Buehler MMT-3 digital microhardness tester Lake Bluff, Illinois USA). A 50 gf load was used and the indenter with a dwell time of 30 s. The data were submitted to the test t Student at significance level of 5%. The mean values of degree of conversion for the polymer and metal light guide tip no were statistically different (p = 0.8389). The hardness mean values were no statistically significant different among the light guide tips (p = 0.6244), however, there was difference between top and bottom surfaces (p < 0.001). The results show that so much the polymer light tip as the metal light tip can be used for the photo-activation, probably for the low quality of the light guide tip metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the flexural strength, microleakage, and degree of conversion of a microhybrid resin polymerized with argon laser and halogen lamp. Method and Materials: For both flexural test and degree of conversion analysis, 5 bar samples of composite resin were prepared and polymerized according to ISO 4049. The halogen light-curing unit was used with 500 MW/cm(2) for 20 seconds and the argon laser with 250 mW for 10 and 20 seconds. Samples were stored in distilled water in a dark environment at 37 degrees C for 24 hours. The flexural property was quantified by a 3-point loading test. For the microleakage evaluation, 60 bovine incisors were used to prepare standardized Class 5 cavities, which were restored and polished. Specimens were stored in distilled water for 24 hours at 37 degrees C and thermocycled 500 times (6 degrees C to 60 degrees C). Specimens were then immersed in art aqueous solution of basic fuchsin for 24 hours. Longitudinal sections of each restoration were obtained and examined with a stereomicroscope for qualitative evaluation of microleakage. Fourier transform (FT)-Raman RFS 100/S spectrometer (Bruker) was used to analyze the degree of conversion. Results: ANOVA showed no statistically significant differences of flexural strength between the photoactivation types evaluated in the flexural study. Microleakage data were statistically analyzed by Mann-Whitney and Kruskal-Wallis tests. Enamel margins resulted in a statistically lower degree of leakage than dentin margins. No statistically significant difference was found among the 3 types of photocuring studied. ANOVA also showed no statistically significant difference in the degree of conversion among the studied groups. Conclusion: According to the methodology used in this research, the argon laser is a possible alternative for photocuring, providing the same quality of polymerization as the halogen lamp. None of the photocured units tested in this study completely eliminated microleakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectroscopy is one of the most widely used techniques for measurement of conversion degree in dental composites. However, to obtain good quality spectra and quantitative analysis from spectral data, appropriate expertise and knowledge of the technique are mandatory. This paper presents important details to use infrared spectroscopy for determination of the conversion degree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods: Filtek (TM) Z350 nanofilled composite resins and Amelogen (R) Plus, Vit-l-escence (TM) and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light (TM) 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results: The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (Filtek (TM) Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek (TM) Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light (TM) 2). Conclusions: The nanofilled resin showed the lowest DC, and the Vit-l-escence (TM) microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.