7 resultados para Cuantil
Resumo:
La conferencia ha tratado sobre la regresión de cuantiles, se han presentado tres aplicaciones empíricas de las técnicas de cuantiles a datos de panel.
Resumo:
Un conjunto de modelos GARCH multivariados son estimados y su validez empírica comparada a partir del cálculo de la medida VaR, para los retornos diarios de la tasa de cambio nominal del peso colombiano con respecto al dólar americano, euro, libra esterlina y yen japonés en el periodo 1999–2005. La comparación de las estimaciones para la matriz de covarianza condicional y los resultados obtenidos para la proporción de fallo y el contraste de cuantil dinámico de Engle y Manganelli (2004) presentan evidencia a favor del modelo de correlación condicional constante.
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Los métodos gráficos son populares para chequear modelos, un gráfico cuantil- cuantil (qq-plot) permite observar cuan cerca está la distribución de un conjunto de datos a alguna distribución ideal o comparar la distribución de dos conjuntos de datos. La forma del gráfico debería ser idealmente una línea recta específica. Si interesa comparar con la distribución Gaussiana se llama gráfico de probabilidad Normal. El objetivo del presente trabajo es testear normalidad de una muestra en especial para el caso de tamaños muestrales pequeños para los cuales el comportamiento de estos gráficos suele ser errático y conducir a falsas interpretaciones, mostraremos además que no suele ser así con tamaños muestrales más grandes. Proponemos, también establecer una banda de probabilidad o banda envolvente basada en un método empírico, específicamente mediante el método de Monte Carlo, dicha banda nos establecerá un marco de referencia probabilístico para evitar falsas interpretaciones. Se presenta un código computacional, de fácil implementación, empleado por los alumnos para la aplicación de esta metodología de análisis de normalidad, el cual es utilizado para la enseñanza de la temática en cuestión
Resumo:
Los métodos gráficos son populares para chequear modelos, un gráfico cuantil- cuantil (qq-plot) permite observar cuan cerca está la distribución de un conjunto de datos a alguna distribución ideal o comparar la distribución de dos conjuntos de datos. La forma del gráfico debería ser idealmente una línea recta específica. Si interesa comparar con la distribución Gaussiana se llama gráfico de probabilidad Normal. El objetivo del presente trabajo es testear normalidad de una muestra en especial para el caso de tamaños muestrales pequeños para los cuales el comportamiento de estos gráficos suele ser errático y conducir a falsas interpretaciones, mostraremos además que no suele ser así con tamaños muestrales más grandes. Proponemos, también establecer una banda de probabilidad o banda envolvente basada en un método empírico, específicamente mediante el método de Monte Carlo, dicha banda nos establecerá un marco de referencia probabilístico para evitar falsas interpretaciones. Se presenta un código computacional, de fácil implementación, empleado por los alumnos para la aplicación de esta metodología de análisis de normalidad, el cual es utilizado para la enseñanza de la temática en cuestión
Resumo:
Los métodos gráficos son populares para chequear modelos, un gráfico cuantil- cuantil (qq-plot) permite observar cuan cerca está la distribución de un conjunto de datos a alguna distribución ideal o comparar la distribución de dos conjuntos de datos. La forma del gráfico debería ser idealmente una línea recta específica. Si interesa comparar con la distribución Gaussiana se llama gráfico de probabilidad Normal. El objetivo del presente trabajo es testear normalidad de una muestra en especial para el caso de tamaños muestrales pequeños para los cuales el comportamiento de estos gráficos suele ser errático y conducir a falsas interpretaciones, mostraremos además que no suele ser así con tamaños muestrales más grandes. Proponemos, también establecer una banda de probabilidad o banda envolvente basada en un método empírico, específicamente mediante el método de Monte Carlo, dicha banda nos establecerá un marco de referencia probabilístico para evitar falsas interpretaciones. Se presenta un código computacional, de fácil implementación, empleado por los alumnos para la aplicación de esta metodología de análisis de normalidad, el cual es utilizado para la enseñanza de la temática en cuestión