954 resultados para Cu, Iodine-arene, hypersilylcopper, copper catalysis, cross-coupling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Reaktion von Kupfertris(trimathylsilyl)silan (= Hypersilylkupfer, CuHyp) mit Iodoorganylverbindungen sollte analog zum Ullmann-Protokoll zum Halogen-Nukleophil-Austausch führen. Tatsächlich beobachteten wir zumeist die Bildung von Cuprio-Organylen, isolierbar in Form von mehrkernigen Neutralkomplexen aus dem Produkt und weiteren Äquivalenten von Hypersilylkupfer. Nach Zugabe von (weichen) Basen wie Trimethylphosphan kam es zur Auflösung dieser Komplexe und zur Bildung der erwarteten Silylorganyle. Von der systematischen Variation der eingesetzten Arene, Alkene und Alkine sowie ihrer Liganden versprachen wir uns tiefere Einsicht in die mechanistischen Zusammenhänge. Neben dem üblichen Halogen-Kupfer-Autausch konnten wir bei orthosubstituierten, bzw. zusätzlich tetramethylsubstituierten Diiodarenen einen einfachen Iod-Siyl-Autausch beobachten (vermutlich über Arinzwischenstufen), für Alkinedukte sogar eine doppelte Silylierung. Tatsächlich zeigen quantenchemische Berechnungen für CuHyp-Iodoorganyl-Systeme eine klare Präferenz von ullmannartigen Verläufen; andererseits führte Basenzugabe erst nachträglich zur Bildung von Ullmann-Produkten über die Auflösung der primären Komplexe. Innerhalb der üblicherweise gebildeten mehrkernigen Komplexe kommen Bindungen durch die Wechselwirkung unbesetzter σ*-Molekülorbitalee am Kupferzentrum von CuHyp und elektronenreichen bindenden Orbitalen in den Kupferorganyleinheiten zustande. Freie Elektronenpaare am Phosphor bei PMe3 könnten analog die Auflösung der Neutralkomplexe und die Bildung von vierkernigen Kupfer(III)-Intermediaten zwischen den Kupferorganyleinheiten und Iodsilan in der Lösung bewirken, die aufgrund ihrer strukturellen und energetischen Besonderheiten zu den erwarteten Ullmann-Produkten weiterreagieren würden. Die beobachteten Primärreaktionen verliefen dann offensichtlich über vergleichbare, aber unterschiedlich strukturierte Intermediate, vermutlich aufgrund der Tatsache, dass das eingesetzte CuHyp als Trimer vorliegt. Diese Annahme wird durch die direkte Silylierung von Iodalkinen gestützt, deren Dreifachbindungen möglicherweise als interne Base die trimeren in monomere CuHyp-Einheiten überführen. In eine ähnliche Richtung wäre die jüngst berichtete direkte Silylierung von Allylen bei Anwesenheit von elektronenreichen CN-Gruppen zu deuten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general protocol for the cross-coupling reaction of Grignard reagents and organic tellurides. Aryl Grignard reagents react stereospecifically with vinyl tellurides in the presence of a catalytic amount of manganese (II) chloride and copper (I) iodide to produce good yields of the corresponding cross-coupling products. (C) 2012 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactivity of Amberlite (IRA-67) base "heterogeneous" resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The Pd2Cl3(PPh)2 precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size ∼2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications. Copyright © Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald–Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly efficient palladium-catalyzed Suzuki coupling of aryl bromides with aiylboronic acids using phosphoramidite ligand 2c was developed. The phosphoramidite ligands are cost-effective and easily prepared from inexpensive, commercially available starting materials using a simple, efficient method. It represents an advance toward the discovery of low-cost catalyst systems for eventual availability. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report herein highly efficient photocatalysts comprising supported nanoparticles (NPs) of gold (Au) and palladium (Pd) alloys, which utilize visible light to catalyse the Suzuki cross-coupling reactions at ambient temperature. The alloy NPs strongly absorb visible light, energizing the conduction electrons of NPs which produce highly energetic electrons at the surface sites. The surface of the energized NPs activates the substrates and these particles exhibit good activity on a range of typical Suzuki reaction combinations. The photocatalytic efficiencies strongly depend on the Au:Pd ratio of the alloy NPs, irradiation light intensity and wavelength. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive Suzuki reactions. Results of the density functional theory (DFT) calculations indicate that transfer of the light-excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. The knowledge acquired in this study may inspire further studies of new efficient photocatalysts and a wide range of organic syntheses driven by sunlight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regioselective formation of highly branched dienes is a challenging task. Design and exploration of alternative working models to achieve such a regioselectivity to accomplish highly branched dienes is considered to be a historical advancement of Heck reaction to construct branched dienes. On the basis of the utility of carbene transfer reactions, in the reaction of hydrazones with Pd(II) under oxidative conditions, we envisioned obtaining a Pd-bis-carbene complex with alpha-hydrogens, which can lead to branched dienes. Herein, we report a novel Pd-catalyzed selective coupling reaction of hydrazones in the presence of t-BuOLi and benzoquinone to form the corresponding branched dienes. The utility of the Pd catalyst for the cross-coupling reactions for synthesizing branched conjugated dienes is rare. The reaction is very versatile and compatible with a variety of functional groups and is useful in synthesizing heterocyclic molecules. We anticipate that this Pd-catalyzed cross-coupling reaction will open new avenues for synthesizing useful compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A magnetic nanoparticle (MNP)-supported di(2-pyridyl)methanol palladium dichloride complex was prepared via click chemistry. The MNP-supported catalyst was evaluated in Suzuki coupling reaction in term of activity and recyclability in DMF. It was found to be highly efficient for Suzuki coupling reaction using aryl bromides as substrates and could be easily separated by an external magnet and reused in five consecutive runs without obvious loss of activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly efficient Pd(OAc)(2)/guanidine aqueous system for the room temperature Suzuki cross-coupling reaction has been developed. The new water-soluble and air-stable catalyst Pd(OAc)(2)(.)(1f)(2) from Pd(OAc)(2) and 1,1,3,3-tetramethyl-2-n-butylguanidine (1f) was synthesized and characterized by X-ray crystallography. In the presence of Pd(OAc)(2)(.)(1f)(2), coupling of arylboronic acids with a wide range of aryl halides, including aryl iodides, aryl bromides, even activated aryl chlorides, was carried out smoothly in aqueous solvent to afford the cross-coupling products in good to excellent yields and high turnover numbers (TONs) (TONs up to 850 000 for the reaction of 1-iodo-4-nitrobenzene and phenylboronic acid). Furthermore, this mild protocol could tolerate a broad range of functional groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new sterically hindered monooxychlorophosphine was synthesized and the complex generated in situ from its reaction with Pd-2(dba)(3) promoted the Suzuki-Miyaura reactions of arylboronic acids with aryl chlorides in good yields.