899 resultados para Crystal Dehydration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diffraction quality crystals are essential for crystallographic studies of protein structure, and the production of poorly diffracting crystals is often regarded as a dead end in the process. Here we show a dramatic improvement of poorly diffracting DsbG crystals allowing high-resolution diffraction data measurement. Before dehydration, the crystals are fragile and the diffraction pattern is streaky, extending to 10 Angstrom resolution. After dehydration, there is a spectacular improvement, with the diffraction pattern extending to 2 Angstrom resolution. This and other recent results show that dehydration is a simple, rapid, and inexpensive approach to convert poor quality crystals into diffraction quality crystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlorocatechol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida (Pp 1,2-CCD) is considered to be an important biotechnological tool owing to its ability to process a broad spectrum of organic pollutants. In the current work, the crystallization, crystallographic characterization and phasing of the recombinant Pp 1,2-CCD enzyme are described. Reddish-brown crystals were obtained in the presence of polyethylene glycol and magnesium acetate by utilizing the vapour-diffusion technique in sitting drops. Crystal dehydration was the key step in obtaining data sets, which were collected on the D03B-MX2 beamline at the CNPEM/MCT - LNLS using a MAR CCD detector. Pp 1,2-CCD crystals belonged to space group P6(1)22 and the crystallographic structure of Pp 1,2-CCD has been solved by the MR-SAD technique using Fe atoms as scattering centres and the coordinates of 3-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus (PDB entry 2boy) as the search model. The initial model, which contains three molecules in the asymmetric unit, has been refined to 3.4 A resolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydration-dependent DNA deformation has been known since Rosalind Franklin recognised that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fibre diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyridophenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven datasets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural modifications upon heating of pentagonite, Ca(VO)(Si4O10)·4H2O (space group Ccm21, a=10.3708(2), b=14.0643(2), c=8.97810(10) Å, V=1309.53(3) Å3) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 °C and in steps of 50 °C between 250 and 400 °C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V4+O5 square pyramids. Ca and H2O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H2O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H2O. The H2O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 °C the H2O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H2O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) Å3 leading to a formula with 3H2O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 °C Ca(VO)(Si4O10)·3H2O transformed into a new phase with 1H2O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific TOT angles led to contraction of the porous three-dimensional framework. In addition, H2O at O9 was expelled while H2O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) Å3. The Ca coordination reduced from seven- to six-fold. At 225 °C a new anhydrous phase with space group Pna21 but without doubling of c had formed. Release of H2O at O7 caused additional contraction of TOT angles and volume reduction (V=1036.31(9) Å3). Ca adopted five-fold coordination. During heating excursion up to 400 °C this anhydrous phase remained preserved. Between room temperature and 225 °C the unit-cell volume decreased by 21% due to dehydration. The dehydration steps compare well with the thermo-gravimetric data reported in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature dependent single-crystal X-ray data were collected on amicite K4Na4(Al8Si8O32)·11H2O from Kola Peninsula (Russia) in steps of 25 °C from room temperature to 175 °C and of 50 °C up to 425 °C. At room temperature amicite has space group I2 with a = 10.2112(1), b = 10.4154(1), c = 9.8802(1) Å, β = 88.458(1)°, V = 1050.416(18) Å3. Its crystal structure is based on a Si–Al ordered tetrahedral framework of the GIS type with two systems of eight-membered channels running along the a and c axes. Extraframework K and Na cations are ordered at two fully occupied sites. Above 75 °C amicite was found to partly dehydrate into two separate but coherently intergrown phases, both of space group I2/a, one K-rich ∼K8(Al8Si8O32) ·4H2O (at 75 °C: a = 10.038(2), b = 9.6805(19), c = 9.843(2) Å, β = 89.93(3)°, V = 956.5(3) Å3) and the other Na-rich ∼Na8(Al8Si8O32)·2H2O (at 75 °C: a = 9.759(2), b = 8.9078(18), c = 9.5270(19) Å, β = 89.98(3)°, V = 828.2(3) Å3). Upon further heating above 75 °C the Na- and K-phases lost remaining H2O with only minor influence on the framework structure and became anhydrous at 175 °C and 375 °C, respectively. The two anhydrous phases persisted up to 425 °C. Backscattered electron images of a heated crystal displayed lamellar intergrowth of the K- and Na-rich phases. Exposed to ambient humid conditions K- and Na-rich phases rehydrated and conjoined to the original one phase I2 structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rare mixed copper-zinc phosphate mineral veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2H2O space group P21/c, a = 7.5096(2), b = 10.2281(2), c = 9.8258(2) Å, β = 103.3040(10)°, V = 734.45(3) Å3 was investigated by in situ temperature-dependent single-crystal X-ray structure refinements. The atomic arrangement of veszelyite consists of an alternation of octahedral and tetrahedral sheets. The Jahn-Teller distorted CuO6 octahedra form sheets with eight-membered rings. The tetrahedral sheet composed of PO4 and ZnO3(OH) tetrahedra shows strong topological similarities to that of cavansite, gismondine, and kipushite.Diffraction data of a sample from Zdravo Vrelo, near Kreševo (Bosnia and Herzegovina) have been measured in steps of 25 up to 225 °C. Hydrogen positions and the hydrogen-bond system were determined experimentally from the structure refinements of data collected up to 125 °C. At 200 °C, the hydrogen-bonding scheme was inferred from bond-valence calculations and donor-acceptor distances. The hydrogen-bond system connects the tetrahedral sheet to the octahedral sheet and also braces the Cu sheet.At 150 °C, the H2O molecule at H2O2 was released and the Cu coordination (Cu1 and Cu2) decreased from originally six- to fivefold. Cu1 has a square planar coordination by four OH groups and an elongate distance to O3, whereas Cu2 has the Jahn-Teller characteristic elongate bond to H2O1. The unit-cell volume decreased 7% from originally 734.45(3) to 686.4(4) Å3 leading to a formula with 1 H2O pfu. The new phase observed above 150 °C is characterized by an increase of the c axis and a shortening of the b axis. The bending of T-O-T angles causes an increasing elliptical shape of the eight-membered rings in the tetrahedral and octahedral sheets. Moreover a rearrangement of the hydrogen-bond system was observed.At 225 °C, the structure degrades to an X-ray amorphous residual due to release of the last H2O molecule at H2O1. The stronger Jahn-Teller distortion of Cu1 relative to Cu2 suggests that Cu1 is fully occupied by Cu, whereas Cu2 bears significant Zn. H2O1 is the fifth ligand of Cu2. Zn at Cu2 is not favorable to adopt planar fourfold coordination. Thus, if the last water molecule is expelled the structure is destabilized.This study contributes to understanding the dehydration mechanism and thermal stability of supergene minerals characterized by Jahn-Teller distorted octahedra with mixed Cu, Zn occupancy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To track dehydration behavior of cavansite, Ca(VO)(Si4O10)·4H2O space group Pnma, a = 9.6329(2), b = 13.6606(2), c = 9.7949(2) Å, V = 1288.92(4) Å3 single-crystal X-ray diffraction data on a crystal from Wagholi quarry, Poona district (India) were collected up to 400 °C in steps of 25 °C up to 250 °C and in steps of 50 °C between 250 and 400 °C. The structure of cavansite is characterized by layers of silicate tetrahedra connected by V4+O5 square pyramids. This way a porous framework structure is formed with Ca and H2O as extraframework occupants. At room temperature, the hydrogen bond system was analyzed. Ca is eightfold coordinated by four bonds to O of the framework structure and four bonds to H2O molecules. H2O linked to Ca is hydrogen bonded to the framework and also to adjacent H2O molecules. The dehydration in cavansite proceeds in four steps.At 75 °C, H2O at O9 was completely expelled leading to 3 H2O pfu with only minor impact on framework distortion and contraction V = 1282.73(3) Å3. The Ca coordination declined from originally eightfold to sevenfold and H2O at O7 displayed positional disorder.At 175 °C, the split O7 sites approached the former O9 position. In addition, the sum of the three split positions O7, O7a, and O7b decreased to 50% occupancy yielding 2 H2O pfu accompanied by a strong decrease in volume V = 1206.89(8) Å3. The Ca coordination was further reduced from sevenfold to sixfold.At 350 °C, H2O at O8 was released leading to a formula with 1 H2O pfu causing additional structural contraction (V = 1156(11) Å3). At this temperature, Ca adopted fivefold coordination and O7 rearranged to disordered positions closer to the original O9 H2O site.At 400 °C, cavansite lost crystallinity but the VO2+ characteristic blue color was preserved. Stepwise removal of water is discussed on the basis of literature data reporting differential thermal analyses, differential thermo-gravimetry experiments and temperature dependent IR spectra in the range of OH stretching vibrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dehydration behaviour of the zeolite merlinoite, NaK11[Al12Si20O64]·15H2O, from the Khibiny massif (Russia) was studied by means of single-crystal X-ray diffraction conjoined with step-wise heating to 225 C. At room temperature merlinoite has the space group Immm with a = 14.0312(5), b = 14.2675(6), c = 10.0874(4) Å, and V = 2019.40(14) Å3. At 75 °C the merlinoite structure undergoes pronounced dehydration accompanied by a phase transition to a structure that has the space group P42/nmc and remains consistent at elevated temperature. A fully dehydrated phase occurs at 200 °C (at 225 °C: a = 13.341(4), b = 13.341(4), c = 9.707(4) Å, V = 1727.7(12) Å3). Dehydration-induced framework distortion and symmetry were found to be different from those observed for synthetic potassium merlinoite with the K11.5[Al11.5Si20.5O64]·15H2O composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C17H15NO4, the conformation about the C=C double bond [1.348 (2) Å] is E with the ketone group almost co-planar [C-C-C-C torsion angle = 7.2 (2)°] but the phenyl group twisted away [C-C-C-C = 160.93 (17)°]. The terminal aromatic rings are almost perpendicular to each other [dihedral angle = 81.61 (9)°] giving the mol-ecule an overall U-shape. The crystal packing feature benzene-C-H⋯O(ketone) contacts that lead to supra-molecular helical chains along the b axis. These are connected by π-π inter-actions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å], resulting in the formation of a supra-molecular layer in the bc plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C-C-C-C torsion angle = 9.5 (2)°] along with the phenyl ring [C-C-C-C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O-N-C-C = 4.2 (2)°], whereas the one in the ortho position is twisted [O-N-C-C = 138.28 (13)°]. The mol-ecules associate via C-H⋯O inter-actions, involving both O atoms from the 2-nitro group, to form a helical supra-molecular chain along [010]. Nitro-nitro N⋯O inter-actions [2.8461 (19) Å] connect the chains into layers that stack along [001].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass®45S5 implants used as control. Ceramic glass Biosilicate and Bioglass®45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites. Bone and a layer of soft tissue were observed in close contact with the implant surfaces in the medullary canal. The connective tissue presented few elongated cells and collagen fibers located parallel to implant surface. Cortical portion after 8 weeks was the only area that demonstrated significant difference between all tested materials, with Biosilicate 1F and Biosilicate 2F presenting higher bone formation than Bioglass®45S5 and Biosilicate® vitreo (p=0.02). All other areas and periods were statistically non-significant (p>0.05). In conclusion, all tested materials were considered biocompatible, demonstrating surface bone formation and a satisfactory behavior at biological environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of meso-1,2-bis(phenylsulfinyl)ethane (meso-bpse) with Ph2SnCl2, 2-phenyl-1,3-dithiane trans-1-trans-3-dioxide (pdtd) with n-Bu2SnCl2 and 1,2-cis-bis-(phenylsulfinyl)ethene (rac-,cis-cbpse) with Ph2SnCl2, in 1:1 molar ratio, yielded [{Ph2SnCl2(meso-bpse)}n], [{n-Bu2SnCl2(pdtd)}2] and [{Ph2SnCl2(rac,cis-cbpse)}x] (x = 2 or n), respectively. All adducts were studied by IR, Mössbauer and 119Sn NMR spectroscopic methods, elemental analysis and single crystal X-ray diffractometry. The X-ray crystal structure of [{Ph2SnCl2(meso-bpse)}n] revealed the occurrence of infinite chains in which the tin(IV) atoms appear in a distorted octahedral geometry with Cl atoms in cis and Ph groups in trans positions. The X-ray crystal structure of [{n-Bu2SnCl2(pdtd)}2] revealed discrete centrosymmetric dimeric species in which the tin(IV) atoms possess a distorted octahedral geometry with bridging disulfoxides in cis and n-butyl moieties in trans positions. The spectroscopic data indicated that the adduct containing the rac,cis-cbpse ligand can be dimeric or polymeric. The X-ray structural analysis of the free rac-,cis-cbpse sulfoxide revealed that the crystals belong to the C2/c space group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.