990 resultados para Critical Points
Resumo:
We report results of magnetoacoustic studies in the quantum spin-chain magnet NiCl(2)-4SC(NH(2))(2) (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c(33) mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T > T(N), where the thermodynamic properties are determined by fermionic magnetic excitations, the ""hallmark"" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a three-dimensional bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.
Resumo:
Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two-dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so-called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate results even considering relatively small lattice sizes. In this paper, we introduce an estimator that locates quantum critical points by exploring the known distinct behavior of the entanglement entropy in critical and noncritical systems. As a benchmark test, we use this new estimator to locate the critical point of the quantum Ising chain and the critical line of the spin-1 Blume-Capel quantum chain. The tricritical point of this last model is also obtained. Comparison with the standard crossing method is also presented. The method we propose is simple to implement in practice, particularly in density matrix renormalization group calculations, and provides us, like the crossing method, amazingly accurate results for quite small lattice sizes. Our applications show that the proposed method has several advantages, as compared with the standard crossing method, and we believe it will become popular in future numerical studies.
Resumo:
The mechanisms that initiate an inflammatory systemic response to a bacterial infection lead to a high mortality and constitute the first cause of death in Critical Care Units (ICU`s). Sepsis is a poorly understood disease and despite life support techniques and the administration of antibiotics, not much more can be done to improve its diagnosis and treatment. The present article has as main objective to discuss the role of neutrophils recruitment in sepsis, dissecting the molecular mechanisms implicated in this complex process and its importance to the pathogenesis of this outstanding cause of death.
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Copyright (C) EPLA, 2011
Resumo:
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Using classical techniques, we prove an abstract genericity result that employs the infinite dimensional Sard-Smale theorem, along the lines of an analogous result of B. White [29]. Applications are given by proving the genericity of metrics without degenerate geodesics between fixed endpoints in general (non compact) semi-Riemannian manifolds, in orthogonally split semi-Riemannian manifolds and in globally hyperbolic Lorentzian manifolds. We discuss the genericity property also in stationary Lorentzian manifolds.
Resumo:
Several biological phenomena have a behavior over time mathematically characterized by a strong increasing function in the early stages of development, then by a less pronounced growth, sometimes showing stability. The separation between these phases is very important to the researcher, since the maintenance of a less productive phase results in uneconomical activity. In this report we present methods of determining critical points in logistic functions that separate the early stages of growth from the asymptotic phase, with the aim of establishing a stopping critical point in the growth and on this basis determine differences in treatments. The logistic growth model is fitted to experimental data of imbibition of arariba seeds (Centrolobium tomentosum). To determine stopping critical points the following methods were used: i) accelerating growth function, ii) tangent at the inflection point, iii) segmented regression; iv) modified segmented regression; v) non-significant difference; and vi) non-significant difference by simulation. The analysis of variance of the abscissas and ordinates of the breakpoints was performed with the objective of comparing treatments and methods used to determine the critical points. The methods of segmented regression and of the tangent at the inflection point lead to early stopping points, in comparison with other methods, with proportions ordinate/asymptote lower than 0.90. The non-significant difference method by simulation had higher values of abscissas for stopping point, with an average proportion ordinate/asymptote equal to 0.986. An intermediate proportion of 0.908 was observed for the acceleration function method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Adjusting autoregressive and mixed models to growth data fits discontinuous functions, which makes it difficult to determine critical points. In this study we propose a new approach to determine the critical stability point of cattle growth using a first-order autoregressive model and a mixed model with random asymptote, using the deterministic portion of the models. Three functions were compared: logistic, Gompertz, and Richards. The Richards autoregressive model yielded the best fit, but the critical growth values were adjusted very early, and for this purpose the Gompertz model was more appropriate.
Resumo:
The quality concepts represent one of the important factors for the success of organizations and among these concepts the stabilization of the production process contributes to the improvement, waste reduction and increased competitiveness. Thus, this study aimed to evaluate the production process of solid wood flooring on its predictability and capacity, based on its critical points. Therefore, the research was divided into three stages. The first one was the process mapping of the company and the elaboration of flowcharts for the activities. The second one was the identification and the evaluation of the critical points using FMEA (Failure Mode and Effect Analysis) adapted methodology. The third one was the evaluation of the critical points applying the statistical process control and the determination of the process capability for the C-pk index. The results showed the existence of six processes, two of them are critical. In those two ones, fifteen points were considered critical and two of them, related with the dimension of the pieces and defects caused by sandpaper, were selected for evaluation. The productive process of the company is unstable and not capable to produce wood flooring according to the specifications and, therefore these specifications should be reevaluated.
Resumo:
In this work we give su±cient conditions for k-th approximations of the polynomial roots of f(x) when the Maehly{Aberth{Ehrlich, Werner-Borsch-Supan, Tanabe, Improved Borsch-Supan iteration methods fail on the next step. For these methods all non-attractive sets are found. This is a subsequent improvement of previously developed techniques and known facts. The users of these methods can use the results presented here for software implementation in Distributed Applications and Simulation Environ- ments. Numerical examples with graphics are shown.