Genericity of Nondegenerate Critical Points and Morse Geodesic Functionals
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Using classical techniques, we prove an abstract genericity result that employs the infinite dimensional Sard-Smale theorem, along the lines of an analogous result of B. White [29]. Applications are given by proving the genericity of metrics without degenerate geodesics between fixed endpoints in general (non compact) semi-Riemannian manifolds, in orthogonally split semi-Riemannian manifolds and in globally hyperbolic Lorentzian manifolds. We discuss the genericity property also in stationary Lorentzian manifolds. Regional Junta Andalucia[P06-FQM-01951] Regional Junta Andalucia Spanish MEC[MTM2007-64504] Spanish MEC Capes, Brasil[BEX 1509-08-0] Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) |
Identificador |
INDIANA UNIVERSITY MATHEMATICS JOURNAL, v.58, n.4, p.1797-1830, 2009 0022-2518 |
Idioma(s) |
eng |
Publicador |
INDIANA UNIV MATH JOURNAL |
Relação |
Indiana University Mathematics Journal |
Direitos |
closedAccess Copyright INDIANA UNIV MATH JOURNAL |
Palavras-Chave | #generic properties of geodesic flows #GLOBALLY HYPERBOLIC SPACETIMES #INFINITE-DIMENSIONAL MANIFOLDS #STATIONARY SPACETIMES #THEOREM #COMPLEX #Mathematics |
Tipo |
article original article publishedVersion |