993 resultados para Crispin Wright
Resumo:
En el presente texto se sostiene, con Rorty, que la verdad no es una propiedad de hechos –ni mucho menos de objetos–. Sin embargo, contra Rorty, se afirma que asumir esta posición no implica la eliminación del concepto de verdad de nuestros discursos teóricos y filosóficos, esto es, que sigue teniendo sentido hacer una reflexión filosófica sobre la verdad. La estrategia para mostrar esto es abiertamente pragmatista: se inicia con el análisis de las prácticas de los hablantes para mostrar que no adquirimos los mismos compromisos cuando atribuimos verdad y cuando atribuimos justificación (sección 1); posteriormente, se evidencia en qué sentido la distinción filosófica entre verdad y justificación es útil socialmente (sección 2); y para finalizar, se muestra que dicha distinción no entraña ninguna metafísica misteriosa (sección 3).
Resumo:
Plantea el problema de explicar el conocimiento de las entidades matemáticas, el desarrollo de la facultad de la intuición matemática. Se parte de la existencia de las entidades abstractas y de su independencia de nosotros; a partir de aquí y tras constatar las dificultades de esta postura, se va matizando poco a poco, hasta llegar a un tipo de realismo mucho más moderado. Propuestas y dilemas. Dilema de Benacerraf-Field, la propuesta de Penelope Maddy, propuesta de los denominados neo-fregeanos, propuesta de Michale Dummett, propuesta de Hilary Putnam, Crispin Wright. Los problemas epistemológicos representan el mayor obstáculo para el realismo en matemáticas. Las opciones anti-realistas por el contrario tienen dificultades para desarrollar una noción de verdad matemática que no rompa la uniformidad semántica con el ámbito empírico. Se defiende una postura moderada, libre de connotaciones metafísicas. Como conclusión final, se defiende la necesidad de adoptar un tipo de realismo moderado para las matemáticas (pero no sólo para ellas), en el cual el problema del conocimiento pueda ser visto como un problema de objetividad. Se defiende, además, que la existencia de las entidades matemáticas no es un elemento indispensable: es la objetividad matemática la que es indispensable para la aplicación de las matemáticas al resto de la ciencia. De esta manera, el problema central pasa ahora a ser la búsqueda de la justificación para la objetividad matemática, entendida como la objetividad en la elección de los axiomas básicos. En este sentido, se defiende la combinación de un tipo de justificación externa, a través de la aplicación y utilidad de estos axiomas básicos para el desarrollo de la propia disciplina de la que formen parte, y un tipo de justificación interna, por medio de la cual se explique satisfactoriamente la fiabilidad de las creencias de los matemáticos en estos axiomas básicos y por lo tanto la verdad de los mismos. Para este último, se propone la adopción de los conceptos dependientes de la respuesta en el ámbito matemático..
Resumo:
Il lavoro è una riflessione sugli sviluppi della nozione di definizione nel recente dibattito sull'analiticità. La rinascita di questa discussione, dopo le critiche di Quine e un conseguente primo abbandono della concezione convenzionalista carnapiana ha come conseguenza una nuova concezione epistemica dell'analiticità. Nella maggior parte dei casi le nuove teorie epistemiche, tra le quali quelle di Bob Hale e Crispin Wright (Implicit Definition and the A priori, 2001) e Paul Boghossian (Analyticity, 1997; Epistemic analyticity, a defence, 2002, Blind reasoning, 2003, Is Meaning Normative ?, 2005) presentano il comune carattere di intendere la conoscenza a priori nella forma di una definizione implicita (Paul Horwich, Stipulation, Meaning, and Apriority, 2001). Ma una seconda linea di obiezioni facenti capo dapprima a Horwich, e in seguito agli stessi Hale e Wright, mettono in evidenza rispettivamente due difficoltà per la definizione corrispondenti alle questioni dell'arroganza epistemica e dell'accettazione (o della stipulazione) di una definizione implicita. Da questo presupposto nascono diversi tentativi di risposta. Da un lato, una concezione della definizione, nella teoria di Hale e Wright, secondo la quale essa appare come un principio di astrazione, dall'altro una nozione della definizione come definizione implicita, che si richiama alla concezione di P. Boghossian. In quest'ultima, la definizione implicita è data nella forma di un condizionale linguistico (EA, 2002; BR, 2003), ottenuto mediante una fattorizzazione della teoria costruita sul modello carnapiano per i termini teorici delle teorie empiriche. Un'analisi attenta del lavoro di Rudolf Carnap (Philosophical foundations of Physics, 1966), mostra che la strategia di scomposizione rappresenta una strada possibile per una nozione di analiticità adeguata ai termini teorici. La strategia carnapiana si colloca, infatti, nell'ambito di un tentativo di elaborazione di una nozione di analiticità che tiene conto degli aspetti induttivi delle teorie empiriche
Resumo:
Peer reviewed
Resumo:
The Wright-Fisher model is an Itô stochastic differential equation that was originally introduced to model genetic drift within finite populations and has recently been used as an approximation to ion channel dynamics within cardiac and neuronal cells. While analytic solutions to this equation remain within the interval [0,1], current numerical methods are unable to preserve such boundaries in the approximation. We present a new numerical method that guarantees approximations to a form of Wright-Fisher model, which includes mutation, remain within [0,1] for all time with probability one. Strong convergence of the method is proved and numerical experiments suggest that this new scheme converges with strong order 1/2. Extending this method to a multidimensional case, numerical tests suggest that the algorithm still converges strongly with order 1/2. Finally, numerical solutions obtained using this new method are compared to those obtained using the Euler-Maruyama method where the Wiener increment is resampled to ensure solutions remain within [0,1].
Resumo:
In this study I consider what kind of perspective on the mind body problem is taken and can be taken by a philosophical position called non-reductive physicalism. Many positions fall under this label. The form of non-reductive physicalism which I discuss is in essential respects the position taken by Donald Davidson (1917-2003) and Georg Henrik von Wright (1916-2003). I defend their positions and discuss the unrecognized similarities between their views. Non-reductive physicalism combines two theses: (a) Everything that exists is physical; (b) Mental phenomena cannot be reduced to the states of the brain. This means that according to non-reductive physicalism the mental aspect of humans (be it a soul, mind, or spirit) is an irreducible part of the human condition. Also Davidson and von Wright claim that, in some important sense, the mental aspect of a human being does not reduce to the physical aspect, that there is a gap between these aspects that cannot be closed. I claim that their arguments for this conclusion are convincing. I also argue that whereas von Wright and Davidson give interesting arguments for the irreducibility of the mental, their physicalism is unwarranted. These philosophers do not give good reasons for believing that reality is thoroughly physical. Notwithstanding the materialistic consensus in the contemporary philosophy of mind the ontology of mind is still an uncharted territory where real breakthroughs are not to be expected until a radically new ontological position is developed. The third main claim of this work is that the problem of mental causation cannot be solved from the Davidsonian - von Wrightian perspective. The problem of mental causation is the problem of how mental phenomena like beliefs can cause physical movements of the body. As I see it, the essential point of non-reductive physicalism - the irreducibility of the mental - and the problem of mental causation are closely related. If mental phenomena do not reduce to causally effective states of the brain, then what justifies the belief that mental phenomena have causal powers? If mental causes do not reduce to physical causes, then how to tell when - or whether - the mental causes in terms of which human actions are explained are actually effective? I argue that this - how to decide when mental causes really are effective - is the real problem of mental causation. The motivation to explore and defend a non-reductive position stems from the belief that reductive physicalism leads to serious ethical problems. My claim is that Davidson's and von Wright's ultimate reason to defend a non-reductive view comes back to their belief that a reductive understanding of human nature would be a narrow and possibly harmful perspective. The final conclusion of my thesis is that von Wright's and Davidson's positions provide a starting point from which the current scientistic philosophy of mind can be critically further explored in the future.
Resumo:
This collection primarily contains correspondence from Wright’s years as president of ASOR. Material dates as far back as 1957, and proceed into the early 1970’s. Some of Wright’s more notable correspondents include William F. Albright, A. Henry Detweiler, Paul W. Lapp, William Reed, and Dean Seiler. Subject-specific correspondence includes records of expenditures, budget planning, corporate memberships, and the Jerusalem School.