958 resultados para Cost allocation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a new method for determining the transmission network usage by loads and generators, which can then be used for transmission cost/loss allocation in an explainable and justifiable manner. The proposed method is based on solid physical grounds and circuit theory. It relies on dividing the currents through the network into two components; the first one is attributed to power flows from generators to loads, whereas the second one is because of the generators only. Unlike almost all the available methods, the proposed method is assumption free and hence it is more accurate than similar methods even those having some physical basis. The proposed method is validated through a transformer analogy, and theoretical derivations. The method is verified through application to the IEEE 30 bus system and the IEEE 118 test system. The results obtained verified many desirable features of the proposed method. Being more accurate in determining the network usage, in an explainable transparent manner, and in giving accurate cost signals, indicating the best locations to add loads and generation, are among the many desirable features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is presented a Game Theory based methodology to allocate transmission costs, considering cooperation and competition between producers. As original contribution, it finds the degree of participation on the additional costs according to the demand behavior. A comparative study was carried out between the obtained results using Nucleolus balance and Shapley Value, with other techniques such as Averages Allocation method and the Generalized Generation Distribution Factors method (GGDF). As example, a six nodes network was used for the simulations. The results demonstrate the ability to find adequate solutions on open access environment to the networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of allocating the cost of the transmission network to generators and demands. A physically-based network usage procedure is proposed. This procedure exhibits desirable apportioning properties and is easy to implement and understand. A case study based on the IEEE 24-bus system is used to illustrate the working of the proposed technique. Some relevant conclusions are finally drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is devoted to Study and discuss the main methods to solve the network cost allocation problem both for generators and demands. From the presented, compared and discussed methods, the first one is based on power injections, the second deals with proportional sharing factors, the third is based upon Equivalent Bilateral Exchanges, the fourth analyzes the power How sensitivity in relation to the power injected, and the last one is based on Z(bus) network matrix. All the methods are initially illustrated using a 4-bus system. In addition, the IEEE 24-bus RTS system is presented for further comparisons and analysis. Appropriate conclusions are finally drawn. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

American Association of State Highway and Transportation Officials, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"March 1982."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers the congestion effects on emission and consumers' allocated cost. In order to consider some environmental and operational effects of congestion, an environmental constrained active-reactive optimal power flow (AROPF) considering capability curve is presented. On outage conditions, the total cost of the system will increase. On the other hand in power systems, the operating cost and system emission have conflicted objectives, then it may be concluded that the outage in the system may lead to a total emission decrease. In this paper the famous Aumann-Shapley method is used as a pricing methodology. Two case studies such as 14-bus and US-bus IEEE test systems are conducted. Results demonstrate that, although the line outage in power systems leads to increase the total cost, the amount of emission depending on the place where the outage occurs can be more than, less than or equal to the normal conditions' emission. Also results show that although from power sellers' standpoint the well-known Aumann-Shapley method is a precise pricing method to cover the incurred cost with an acceptable error that can show the real effect of congestion on consumers' cost, from consumers' standpoint it is not a good method for cost allocation, because some consumers will face with an increase in cost and the others will face with a decrease on their cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Choosing between Light Rail Transit (LRT) and Bus Rapid Transit (BRT) systems is often controversial and not an easy task for transportation planners who are contemplating the upgrade of their public transportation services. These two transit systems provide comparable services for medium-sized cities from the suburban neighborhood to the Central Business District (CBD) and utilize similar right-of-way (ROW) categories. The research is aimed at developing a method to assist transportation planners and decision makers in determining the most feasible system between LRT and BRT. ^ Cost estimation is a major factor when evaluating a transit system. Typically, LRT is more expensive to build and implement than BRT, but has significantly lower Operating and Maintenance (OM) costs than BRT. This dissertation examines the factors impacting capacity and costs, and develops cost models, which are a capacity-based cost estimate for the LRT and BRT systems. Various ROW categories and alignment configurations of the systems are also considered in the developed cost models. Kikuchi's fleet size model (1985) and cost allocation method are used to develop the cost models to estimate the capacity and costs. ^ The comparison between LRT and BRT are complicated due to many possible transportation planning and operation scenarios. In the end, a user-friendly computer interface integrated with the established capacity-based cost models, the LRT and BRT Cost Estimator (LBCostor), was developed by using Microsoft Visual Basic language to facilitate the process and will guide the users throughout the comparison operations. The cost models and the LBCostor can be used to analyze transit volumes, alignments, ROW configurations, number of stops and stations, headway, size of vehicle, and traffic signal timing at the intersections. The planners can make the necessary changes and adjustments depending on their operating practices. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Midwest Independent Transmission System Operator (MISO) has experienced significant amounts of wind power development within the last decade. The MISO footprint spans the majority of the upper Midwest region of the country, from the Dakotas to Indiana and as far east as Michigan. These areas have a rich wind energy resource. States in the MISO footprint have passed laws or set goals that require load serving entities to supply a portion of their load using renewable energy. In order to meet these requirements, significant investments are needed to build the transmission infrastructure necessary to deliver the power from these often remote wind energy resources to the load centers. This paper presents some of the transmission planning related work done at MISO which was largely influenced by current and future needs for increased wind power generation in the footprint. Specifically, topics covered are generator interconnection, long-term planning coordination, and cost-allocation for new transmission lines.