988 resultados para Correlation models
Resumo:
In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.
Resumo:
Measurements of global and diffuse solar-radiation, at the Earth's surface, carried out from May 1994 to June 1999 in São Paulo City, Brazil, were used to develop correlation models to estimate hourly, daily and monthly values of diffuse solar-radiation on horizontal surfaces. The polynomials derived by linear regression fitting were able to model satisfactorily the daily and monthly values of diffuse radiation. The comparison with models derived for other places demonstrates some differences related mainly to altitude effects. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper we reviewed the models of volatility for a group of five Latin American countries, mainly motivated by the recent periods of financial turbulence. Our results based on high frequency data suggest that Dynamic multivariate models are more powerful to study the volatilities of asset returns than Constant Conditional Correlation models. For the group of countries included, we identified that domestic volatilities of asset markets have been increasing; but the co-volatility of the region is still moderate.
Resumo:
Introduction: The In vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance.
Resumo:
This paper measures the degree in stock market integration between five Eastern European countries and the Euro-zone. A potentially gradual transition in correlations is accommodated by smooth transition conditional correlation models. We find that the correlation between stock markets has increased from 2001 to 2007. In particular, the Czech and Polish markets show a higher correlation to the Euro-zone. However, this is not a broad-based phenomenon across Eastern Europe. We also find that the increase in correlations is not a reflection of a world-wide phenomenon of financial integration but appears to be specific to the European market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; New EU Members.
Resumo:
The advent of the European Union has decreased the diversification benefits available from country based equity market indices in the region. This paper measures the increase in stock integration between the three largest new EU members (Hungary, the Czech Republic and Poland who joined in May 2004) and the Euro-zone. A potentially gradual transition in correlations is accommodated in a single VAR model by embedding smooth transition conditional correlation models with fat tails, spillovers, volatility clustering, and asymmetric volatility effects. At the country market index level all three Eastern European markets show a considerable increase in correlations in 2006. At the industry level the dates and transition periods for the correlations differ, and the correlations are lower although also increasing. The results show that sectoral indices in Eastern European markets may provide larger diversification opportunities than the aggregate market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; Sectoral correlations; New EU Members
Resumo:
Financial integration has been pursued aggressively across the globe in the last fifty years; however, there is no conclusive evidence on the diversification gains (or losses) of such efforts. These gains (or losses) are related to the degree of comovements and synchronization among increasingly integrated global markets. We quantify the degree of comovements within the integrated Latin American market (MILA). We use dynamic correlation models to quantify comovements across securities as well as a direct integration measure. Our results show an increase in comovements when we look at the country indexes, however, the increase in the trend of correlation is previous to the institutional efforts to establish an integrated market in the region. On the other hand, when we look at sector indexes and an integration measure, we find a decreased in comovements among a representative sample of securities form the integrated market.
Resumo:
In this analysis, using available hourly and daily radiometric data performed at Botucatu, Brazil, several empirical models relating ultraviolet (UV), photosynthetically active (PAR) and near infrared (NIR) solar global components with solar global radiation (G) are established. These models are developed and discussed through clearness index K(T) (ratio of the global-to-extraterrestrial solar radiation). Results obtained reveal that the proposed empirical models predict hourly and daily values accurately. Finally. the overall analysis carried Out demonstrates that the sky conditions are more important in developing correlation models between the UV component and the global solar radiation. The linear regression models derived to estimate PAR and NIR components may be obtained without sky condition considerations within a maximum variation of 8%. In the case of UV, not taking into consideration the sky condition may cause a discrepancy of up to 18% for hourly values and 15% for daily values. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this analysis, using available hourly and daily radiometric data performed at Botucatu, Brazil, several empirical models relating ultraviolet (UV), photosynthetically active (PAR) and near infrared (NIR) solar global components with solar global radiation (G) are established. These models are developed and discussed through clearness index K(T) (ratio of the global-to-extraterrestrial solar radiation). Results obtained reveal that the proposed empirical models predict hourly and daily values accurately. Finally. the overall analysis carried Out demonstrates that the sky conditions are more important in developing correlation models between the UV component and the global solar radiation. The linear regression models derived to estimate PAR and NIR components may be obtained without sky condition considerations within a maximum variation of 8%. In the case of UV, not taking into consideration the sky condition may cause a discrepancy of up to 18% for hourly values and 15% for daily values. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.
Resumo:
The random walk models with temporal correlation (i.e. memory) are of interest in the study of anomalous diffusion phenomena. The random walk and its generalizations are of prominent place in the characterization of various physical, chemical and biological phenomena. The temporal correlation is an essential feature in anomalous diffusion models. These temporal long-range correlation models can be called non-Markovian models, otherwise, the short-range time correlation counterparts are Markovian ones. Within this context, we reviewed the existing models with temporal correlation, i.e. entire memory, the elephant walk model, or partial memory, alzheimer walk model and walk model with a gaussian memory with profile. It is noticed that these models shows superdiffusion with a Hurst exponent H > 1/2. We study in this work a superdiffusive random walk model with exponentially decaying memory. This seems to be a self-contradictory statement, since it is well known that random walks with exponentially decaying temporal correlations can be approximated arbitrarily well by Markov processes and that central limit theorems prohibit superdiffusion for Markovian walks with finite variance of step sizes. The solution to the apparent paradox is that the model is genuinely non-Markovian, due to a time-dependent decay constant associated with the exponential behavior. In the end, we discuss ideas for future investigations.
Resumo:
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.