998 resultados para Coordination Mapping Recovering
Resumo:
Exploratory tasks supported by visualization are usually improved by Coordinated and Multiple Views (CMV) of the data under study. Several coordination techniques have been proposed in the literature, resulting in a diversity of tools to generate mappings among the multiple views. These mappings can be highly dynamic, and their history reveals the settings employed in the multiple exploratory tasks conducted in a discovery process. Several solutions have been proposed to help users to recover the steps performed in exploratory tasks, but little support is found for registering the multiple coordination mappings employed. This paper provides a contribution in this direction, proposing a model for storing and recovering such mappings. We believe such a facility is an important feature of CMV systems, so that users can recover and rerun the coordinations performed when exploring their data. We present details of the proposed model and show some potential applications. © 2012 IEEE.
Resumo:
We found that Pd(II) ion (M) and the smallest 120 bidentate donor pyrimidine (L-a) self-assemble into a mononuclear M(L-a)(4) complex (1a) instead of the expected smallest M-12(L-a)(24) molecular ball (1), presumably due to the weak coordination nature of the pyrimidine. To construct such a pyrimidine bridged nanoball, we employed a new donor tris(4-(pyrimidin-5-yl)phenyl)amine (L); which upon selective complexation with Pd(II) ions resulted in the formation of a pregnant M24L24 molecular nanoball (2) consisting of a pyrimidine-bridged Pd-12 baby-ball supported by a Pd-12 larger mother-ball. The formation of the baby-ball was not successful without the support of the mother-ball. Thus, we created an example of a self-assembly where the inner baby-ball resembling to the predicted M-12(L-a)(24) ball (1) was incarcerated by the giant outer mother-ball by means of geometrical constraints. Facile conversion of the pregnant ball 2 to a smaller M-12(L-b)(24) ball 3 with dipyridyl donor was achieved in a single step.
Resumo:
Includes bibliography
Resumo:
Washington depends on a healthy coastal and marine ecosystem to maintain a thriving economy and vibrant communities. These ecosystems support critical habitats for wildlife and a growing number of often competing ocean activities, such as fishing, transportation, aquaculture, recreation, and energy production. Planners, policy makers and resource managers are being challenged to sustainably balance ocean uses, and environmental conservation in a finite space and with limited information. This balancing act can be supported by spatial planning. Marine spatial planning (MSP) is a planning process that enables integrated, forward looking, and consistent decision making on the human uses of the oceans and coasts. It can improve marine resource management by planning for human uses in locations that reduce conflict, increase certainty, and support a balance among social, economic, and ecological benefits we receive from ocean resources. In March 2010, the Washington state legislature enacted a marine spatial planning law (RCW §43.372) to address resource use conflicts in Washington waters. In 2011, a report to the legislature and a workshop on human use data provided guidance for the marine spatial planning process. The report outlines a set of recommendations for the State to effectively undertake marine spatial planning and this work plan will support some of these recommendations, such as: federal integration, regional coordination, developing mechanisms to integrate scientific and technical expertise, developing data standards, and accessing and sharing spatial data. In 2012 the Governor amended the existing law to focus funding on mapping and ecosystem assessments for Washington’s Pacific coast and the legislature provided $2.1 million in funds to begin marine spatial planning off Washington’s coast. The funds are appropriated through the Washington Department of Natural Resources Marine Resources Stewardship Account with coordination among the State Ocean Caucus, the four Coastal Treaty Tribes, four coastal Marine Resource Committees and the newly formed stakeholder body, the Washington Coastal Marine Advisory Council.
Resumo:
Q. Meng and M. H Lee, Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks, Connection Science, 19(1), pp 25-52, 2007.
Resumo:
Q. Meng and M. H. Lee, 'Construction of Robot Intra-modal and Inter-modal Coordination Skills by Developmental Learning', Journal of Intelligent and Robotic Systems, 48(1), pp 97-114, 2007.
Resumo:
Q. Meng and M.H. Lee, 'Biologically inspired automatic construction of cross-modal mapping in robotic eye/hand systems', IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006,) ,4742-49, Beijing, 2006.
Resumo:
For at least two millennia and probably much longer, the traditional vehicle for communicating geographical information to end-users has been the map. With the advent of computers, the means of both producing and consuming maps have radically been transformed, while the inherent nature of the information product has also expanded and diversified rapidly. This has given rise in recent years to the new concept of geovisualisation (GVIS), which draws on the skills of the traditional cartographer, but extends them into three spatial dimensions and may also add temporality, photorealistic representations and/or interactivity. Demand for GVIS technologies and their applications has increased significantly in recent years, driven by the need to study complex geographical events and in particular their associated consequences and to communicate the results of these studies to a diversity of audiences and stakeholder groups. GVIS has data integration, multi-dimensional spatial display advanced modelling techniques, dynamic design and development environments and field-specific application needs. To meet with these needs, GVIS tools should be both powerful and inherently usable, in order to facilitate their role in helping interpret and communicate geographic problems. However no framework currently exists for ensuring this usability. The research presented here seeks to fill this gap, by addressing the challenges of incorporating user requirements in GVIS tool design. It starts from the premise that usability in GVIS should be incorporated and implemented throughout the whole design and development process. To facilitate this, Subject Technology Matching (STM) is proposed as a new approach to assessing and interpreting user requirements. Based on STM, a new design framework called Usability Enhanced Coordination Design (UECD) is ten presented with the purpose of leveraging overall usability of the design outputs. UECD places GVIS experts in a new key role in the design process, to form a more coordinated and integrated workflow and a more focused and interactive usability testing. To prove the concept, these theoretical elements of the framework have been implemented in two test projects: one is the creation of a coastal inundation simulation for Whitegate, Cork, Ireland; the other is a flooding mapping tool for Zhushan Town, Jiangsu, China. The two case studies successfully demonstrated the potential merits of the UECD approach when GVIS techniques are applied to geographic problem solving and decision making. The thesis delivers a comprehensive understanding of the development and challenges of GVIS technology, its usability concerns, usability and associated UCD; it explores the possibility of putting UCD framework in GVIS design; it constructs a new theoretical design framework called UECD which aims to make the whole design process usability driven; it develops the key concept of STM into a template set to improve the performance of a GVIS design. These key conceptual and procedural foundations can be built on future research, aimed at further refining and developing UECD as a useful design methodology for GVIS scholars and practitioners.
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.
Resumo:
Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ce rapport de recherche porte sur une étude s’intéressant au transfert des connaissances tacites chez les gestionnaires, c’est-à-dire le partage de ces connaissances et leur utilisation informelle, durant une situation de coordination dans un service municipal. La thèse est articulée autour des questions suivantes : Quelles sont les situations de coordination vécues par les gestionnaires municipaux? Quelles sont les sources de connaissances tacites partagées et utilisées? Quelles sont les relations de connaissances mobilisées de façon informelle lors du transfert des connaissances tacites? Quels sont les facteurs encourageant ou inhibant le transfert informel des connaissances tacites? À partir d’un modèle basé sur une approche situationnelle (Taylor, 1989 et 1991), nous avons revu la documentation touchant nos questions de recherche. Nous avons défini notamment la récursivité des connaissances et le réseau de connaissances, de même que présenté le modèle de la conversion des connaissances (Nonaka, 1994) et celui de l’actualisation de soi (St-Arnaud, 1996). Nous avons questionné 22 répondants à l’aide d’instruments de mesure qui combinent les techniques de l’incident critique, de l’entrevue cognitive et réflexive, le questionnement sur les réseaux organisationnels et l’observation participante. Tels des filets, ces instruments ont permis de traquer et d’obtenir des données d’une grande richesse sur les connaissances tacites et les comportements informels durant le transfert de connaissances en situation de coordination. Ces données ont été analysées selon une approche méthodologique essentiellement qualitative combinant l’analyse de contenu, la schématisation heuristique et l’analyse des réseaux sociaux. Nos résultats montrent que la complexité d’une situation de coordination conditionne le choix des mécanismes de coordination. De plus, les sources de connaissances sont, du point de vue individuel, le gestionnaire et ses artefacts, de même que son réseau personnel avec ses propres artefacts. Du point de vue collectif, ces sources sont réifiées dans le réseau de connaissances. Les connaissances clés d’une situation de coordination sont celles sur le réseau organisationnel, le contexte, les expériences en gestion et en situation complexe de coordination, la capacité de communiquer, de négocier, d’innover et celle d’attirer l’attention. Individuellement, les gestionnaires privilégient l’actualisation de soi, l’autoformation et la formation contextualisée et, collectivement, la coprésence dans l’action, le réseautage et l’accompagnement. Cette étude fournit un modèle valide du transfert contextualisé des connaissances qui est un cas de coordination complexe d’activités en gestion des connaissances. Ce transfert est concomitant à d’autres situations de coordination. La nature tacite des connaissances prévaut, de même que le mode informel, les médias personnels et les mécanismes d’ajustement mutuel. Les connaissances tacites sont principalement transférées au début des processus de gestion de projet et continuellement durant la rétroaction et le suivi des résultats. Quant aux connaissances explicites, les gestionnaires les utilisent principalement comme un symbole à la fin des processus de gestion de projet. Parmi les personnes et les groupes de personnes d’une situation de transfert contextualisé des connaissances, 10 % jouent des rôles clés, soit ceux d’experts et d’intermédiaires de personnes et d’artefacts. Les personnes en périphérie possèdent un potentiel de structuration, c’est-à-dire de connexité, pour assurer la continuité du réseau de connaissances organisationnel. Notre étude a élargi le modèle général de la complexité d’une situation (Bystrom, 1999; Choo, 2006; Taylor, 1986 et 1991), la théorie de la coordination (Malone et Crowston, 1994), le modèle de la conversion des connaissances (Nonaka, 1994), celui de l’actualisation de soi (St-Arnaud, 1996) et la théorie des réseaux de connaissances (Monge et Contractor, 2003). Notre modèle réaffirme la concomitance de ces modèles généraux selon une approche constructiviste (Giddens, 1987) où la dualité du structurel et la compétence des acteurs sont confirmées et enrichies.
Resumo:
The time is ripe for a comprehensive mission to explore and document Earth's species. This calls for a campaign to educate and inspire the next generation of professional and citizen species explorers, investments in cyber-infrastructure and collections to meet the unique needs of the producers and consumers of taxonomic information, and the formation and coordination of a multi-institutional, international, transdisciplinary community of researchers, scholars and engineers with the shared objective of creating a comprehensive inventory of species and detailed map of the biosphere. We conclude that an ambitious goal to describe 10 million species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation and collaborative teamwork. Existing digitization projects are overcoming obstacles of the past, facilitating collaboration and mobilizing literature, data, images and specimens through cyber technologies. Charting the biosphere is enormously complex, yet necessary expertise can be found through partnerships with engineers, information scientists, sociologists, ecologists, climate scientists, conservation biologists, industrial project managers and taxon specialists, from agrostologists to zoophytologists. Benefits to society of the proposed mission would be profound, immediate and enduring, from detection of early responses of flora and fauna to climate change to opening access to evolutionary designs for solutions to countless practical problems. The impacts on the biodiversity, environmental and evolutionary sciences would be transformative, from ecosystem models calibrated in detail to comprehensive understanding of the origin and evolution of life over its 3.8 billion year history. The resultant cyber-enabled taxonomy, or cybertaxonomy, would open access to biodiversity data to developing nations, assure access to reliable data about species, and change how scientists and citizens alike access, use and think about biological diversity information.
Resumo:
This study aimed to map phytophysiognomies of an area of Ombrophilous Dense Forest at Parque Estadual da Serra do Mar and characterize their floristic composition. Photointerpretation of aerial photographs in scale of 1:35,000 was realized in association with field work. Thirteen physiognomies were mapped and they were classified as Montane Ombrophilous Dense Forest, Alluvial Ombrophilous Dense Forest or Secondary System. Three physiognomies identified at Casa de Pedra streamlet's basin were studied with more details. Riparian forest (RF), valley forest (VF), and hill forest (HF) presented some floristic distinction, as confirmed by Detrended Correspondence Analysis (DCA) and Indicator Species Analysis (ISA) conducted here. Anthropic or natural disturbances and heterogeneity of environmental conditions may be the causes of physiognomic variation in the vegetation of the region. The results presented here may be useful to decisions related to management and conservation of Núcleo Santa Virgínia forests, in general.
Resumo:
A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids.
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.