Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks


Autoria(s): Meng, Qinggang; Lee, Mark
Contribuinte(s)

Department of Computer Science

Intelligent Robotics Group

Data(s)

22/01/2008

22/01/2008

2007

Resumo

Q. Meng and M. H Lee, Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks, Connection Science, 19(1), pp 25-52, 2007.

Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.

Peer reviewed

Formato

28

Identificador

Meng , Q & Lee , M 2007 , ' Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks ' Connection Science , vol 19 , no. 1 , pp. 25-52 . DOI: 10.1080/09540090600971302

1360-0494

PURE: 74994

PURE UUID: dd8121a9-3196-4c99-9f79-8c1ddd17c1eb

dspace: 2160/447

http://hdl.handle.net/2160/447

http://dx.doi.org/10.1080/09540090600971302

Idioma(s)

eng

Relação

Connection Science

Palavras-Chave #Biologically inspired robot learning #Extended Kalman filter #Plasticity in radial-basis function networks #robotics
Tipo

/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article

Article (Journal)

Direitos