3 resultados para Coordination Mapping Recovering

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for gene enrichment has been developed and applied to mapping the rRNA genes of two eucaryotic organisms. The method makes use of antibodies to DNA/RNA hybrids prepared by injecting rabbits with the synthetic hybrid poly(rA)•poly(dT). Antibodies which cross-react with non-hybrid nucleic acids were removed from the purified IgG fraction by adsorption on columns of DNA-Sepharose, oligo(dT)-cellulose, and poly(rA)-Sepharose. Subsequent purification of the specific DNA/RNA hybrid antibody was carried out on a column of oligo(dT)-cellulose to which poly(rA) was hybridized. Attachment of these antibodies to CNBr-activated Sepharose produced an affinity resin which specifically binds DNA/RNA hybrids.

In order to map the rDNA of the slime mold Dictyostelium discoideum, R-loops were formed using unsheared nuclear DNA and the 178 and 268 rRNAs of this organism. This mixture was passed through a column containing the affinity resin, and bound molecules containing R- loops were eluted by high salt. This purified rDN A was observed directly in the electron microscope. Evidence was obtained that there is a physical end to Dictyostelium rDN A molecules approximately 10 kilobase pairs (kbp) from the region which codes for the 268 rRNA. This finding is consistent with reports of other investigators that the rRNA genes exist as inverse repeats on extra-chromosomal molecules of DNA unattached to the remainder of the nuclear DNA in this organism.

The same general procedure was used to map the rRNA genes of the rat. Molecules of DNA which contained R-loops formed with the 188 and 288 rRNAs were enriched approximately 150- fold from total genomal rat DNA by two cycles of purification on the affinity column. Electron microscopic measurements of these molecules enabled the construction of an R-loop map of rat rDNA. Eleven of the observed molecules contained three or four R-loops or else two R-loops separated by a long spacer. These observations indicated that the rat rRNA genes are arranged as tandem repeats. The mean length of the repeating units was 37.2 kbp with a standard deviation of 1.3 kbp. These eleven molecules may represent repeating units of exactly the same length within the errors of the measurements, although a certain degree of length heterogeneity cannot be ruled out. If significantly shorter or longer repeating units exist, they are probably much less common than the 37.2 kbp unit.

The last section of the thesis describes the production of antibodies to non-histone chromosomal proteins which have been exposed to the ionic detergent sodium dodecyl sulfate (SDS). The presence of low concentrations of SDS did not seem to affect either production of antibodies or their general specificity. Also, a technique is described for the in situ immunofluorescent detection of protein antigens in polyacrylamide gels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of terl-butylperoxide complexes of hafnium, Cp*2Hf(R)(OOCMe3) (Cp* = ((η5-C5Me5); R = Cl, H, CH3, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2, CH=CHCMe3, C6H5, meta-C6H3(CH2)2) and Cp*(η5-C5(CH3)4CH2CH2CH2)Hf(OOCMe3), has been synthesized. One example has been structurally characterized, Cp*2Hf(OOCMe3)CH2CH3 crystallizes in space group P21/c, with a = 19.890(7)Å, b = 8.746(4)Å, c = 17.532(6)Å, β = 124.987(24)°, V = 2498(2)Å3, Z = 4 and RF = 0.054 (2222 reflections, I > 0). Despite the coordinative unsaturation of the hafnium center, the terl-butylperoxide ligand is coordinated in a mono-dentate ligand. The mode of decomposition of these species is highly dependent on the substituent R. For R = H, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2 a clean first order conversion to Cp*2Hf(OCMe3)(OR) is observed (for R CH2CH3, ΔHǂ = 19.6 kcal•mol-1, ΔSǂ = -13 e.u.). These results are discussed in terms of a two step mechanism involving η2-coordination of the terl-butylperoxide ligand. Homolytic O-O bond cleavage is observed upon heating of Cp*2Hf(OOCMe3) R (R = C6H6, meta-C6H3(CH3)2). In the presence of excess 9,10-dihydroanthracene thermolysis of Cp*2Hf(OOCMe3)C6H6 cleanly affords Cp*2Hf(C6H6)OH and HOCMe3 (ΔHǂ = 22.6 kcal•mol-1, ΔSǂ = -9 e.u.). The O-O bond strength in these complexes is thus estimated to be 22 kcal•mol-1.

Cp*2Ta(CH2)H, Cp*2Ta(CHC6H5)H, Cp*2Ta(C6H4)H, Cp*2Ta(CH2=CH2)H and Cp*2Ta(CH2=CHMe)H react, presumably through Cp*2Ta-R intermediates, with H2O to give Cp*2Ta(O)H and alkane. Cp*2Ta(O)H was structurally characterized: space group P21/n, a= 13.073(3)Å, b = 19.337(4)Å, c = 16.002(3)Å, β = 108.66(2)°, V = 3832(1)Å3, Z = 8 and RF = 0.0672 (6730 reflections). Reaction of terlbutylhydroperoxide with these same starting materials ultimately yields Cp*2Ta(O)R and HOCMe3. Cp*2Ta(CH2=CHR)OH species are proposed as intermediates in the olefin hydride reactions. Cp*2Ta(O2)R species can be generated from the reaction of the same starting materials and O2. Lewis acids have been shown to promote oxygen insertion in these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of many positive stranded RNA viruses and of all retroviruses are translated as large polyproteins which are proteolytically processed by cellular and viral proteases. Viral proteases are structurally related to two families of cellular proteases, the pepsin-like and trypsin-like proteases. This thesis describes the proteolytic processing of several nonstructural proteins of dengue 2 virus, a representative member of the Flaviviridae, and describes methods for transcribing full-length genomic RNA of dengue 2 virus. Chapter 1 describes the in vitro processing of the nonstructural proteins NS2A, NS2B and NS3. Chapter 2 describes a system that allows identification of residues within the protease that are directly or indirectly involved with substrate recognition. Chapter 3 describes methods to produce genome length dengue 2 RNA from cDNA templates.

The nonstructural protein NS3 is structurally related to viral trypsinlike proteases from the alpha-, picorna-, poty-, and pestiviruses. The hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins was tested using an efficient in vitro expression system and antisera specific for the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed using T7 RNA polymerase and the RNA translated in reticulocyte lysates. Proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain necessary and sufficient for correct cleavage to the first 184 amino acids of NS3. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.

Biochemical and genetic experiments using viral proteinases have defined the sequence requirements for cleavage site recognition, but have not identified residues within proteinases that interact with substrates. A biochemical assay was developed that could identify residues which were important for substrate recognition. Chimeric proteases between yellow fever and dengue 2 were constructed that allowed mapping of regions involved in substrate recognition, and site directed mutagenesis was used to modulate processing efficiency.

Expression in vitro revealed that the dengue protease domain efficiently processes the yellow fever polyprotein between NS2A and NS2B and between NS2B and NS3, but that the reciprocal construct is inactive. The dengue protease processes yellow fever cleavage sites more efficiently than dengue cleavage sites, suggesting that suboptimal cleavage efficiency may be used to increase levels of processing intermediates in vivo. By mutagenizing the putative substrate binding pocket it was possible to change the substrate specificity of the yellow fever protease; changing a minimum of three amino acids in the yellow fever protease enabled it to recognize dengue cleavage sites. This system allows identification of residues which are directly or indirectly involved with enzyme-substrate interaction, does not require a crystal structure, and can define the substrate preferences of individual members of a viral proteinase family.

Full-length cDNA clones, from which infectious RNA can be transcribed, have been developed for a number of positive strand RNA viruses, including the flavivirus type virus, yellow fever. The technology necessary to transcribe genomic RNA of dengue 2 virus was developed in order to better understand the molecular biology of the dengue subgroup. A 5' structural region clone was engineered to transcribe authentic dengue RNA that contains an additional 1 or 2 residues at the 5' end. A 3' nonstructural region clone was engineered to allow production of run off transcripts, and to allow directional ligation with the 5' structural region clone. In vitro ligation and transcription produces full-length genomic RNA which is noninfectious when transfected into mammalian tissue culture cells. Alternative methods for constructing cDNA clones and recovering live dengue virus are discussed.