999 resultados para Controlador preditivo robusto
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol
Resumo:
O sucesso de estratégias de controle preditivo baseado em modelo (MPC, na sigla em inglês) tanto em ambiente industrial quanto acadêmico tem sido marcante. No entanto, ainda há diversas questões em aberto na área, especialmente quando a hipótese simplificadora de modelo perfeito é abandonada. A consideração explícita de incertezas levou a importantes progressos na área de controle robusto, mas esta ainda apresenta alguns problemas: a alta demanda computacional e o excesso de conservadorismo são questões que podem ter prejudicado a aplicação de estratégias de controle robusto na prática. A abordagem de controle preditivo estocástico (SMPC, na sigla em inglês) busca a redução do conservadorismo através da incorporação de informação estatística dos ruídos. Como processos na indústria química sempre estão sujeito a distúrbios, seja devido a diferenças entre planta e modelo ou a distúrbios não medidos, está técnica surge como uma interessante alternativa para o futuro. O principal objetivo desta tese é o desenvolvimento de algoritmos de SMPC que levem em conta algumas das especificidades de tais processos, as quais não foram adequadamente tratadas na literatura até o presente. A contribuição mais importante é a inclusão de ação integral no controlador através de uma descrição do modelo em termos de velocidade. Além disso, restrições obrigatórias (hard) nas entradas associadas a limites físicos ou de segurança e restrições probabilísticas nos estados normalmente advindas de especificações de produtos também são consideradas na formulação. Duas abordagens foram seguidas neste trabalho, a primeira é mais direta enquanto a segunda fornece garantias de estabilidade em malha fechada, contudo aumenta o conservadorismo. Outro ponto interessante desenvolvido nesta tese é o controle por zonas de sistemas sujeitos a distúrbios. Essa forma de controle é comum na indústria devido à falta de graus de liberdade, sendo a abordagem proposta a primeira contribuição da literatura a unir controle por zonas e SMPC. Diversas simulações de todos os controladores propostos e comparações com modelos da literatura são exibidas para demonstrar o potencial de aplicação das técnicas desenvolvidas.
Resumo:
The predictive control technique has gotten, on the last years, greater number of adepts in reason of the easiness of adjustment of its parameters, of the exceeding of its concepts for multi-input/multi-output (MIMO) systems, of nonlinear models of processes could be linearised around a operating point, so can clearly be used in the controller, and mainly, as being the only methodology that can take into consideration, during the project of the controller, the limitations of the control signals and output of the process. The time varying weighting generalized predictive control (TGPC), studied in this work, is one more an alternative to the several existing predictive controls, characterizing itself as an modification of the generalized predictive control (GPC), where it is used a reference model, calculated in accordance with parameters of project previously established by the designer, and the application of a new function criterion, that when minimized offers the best parameters to the controller. It is used technique of the genetic algorithms to minimize of the function criterion proposed and searches to demonstrate the robustness of the TGPC through the application of performance, stability and robustness criterions. To compare achieves results of the TGPC controller, the GCP and proportional, integral and derivative (PID) controllers are used, where whole the techniques applied to stable, unstable and of non-minimum phase plants. The simulated examples become fulfilled with the use of MATLAB tool. It is verified that, the alterations implemented in TGPC, allow the evidence of the efficiency of this algorithm
Resumo:
Postsurgical complication of hypertension may occur in cardiac patients. To decrease the chances of complication it is necessary to reduce elevated blood pressure as soon as possible. Continuous infusion of vasodilator drugs, such as sodium nitroprusside (Nipride), would quickly lower the blood pressure in most patients. However, each patient has a different sensitivity to infusion of Nipride. The parameters and the time delays of the system are initially unknown. Moreover, the parameters of the transfer function associated with a particular patient are time varying. the objective of the study is to develop a procedure for blood pressure control i the presence of uncertainty of parameters and considerable time delays. So, a methodology was developed multi-model, and for each such model a Preditive Controller can be a priori designed. An adaptive mechanism is then needed for deciding which controller should be dominant for a given plant
Resumo:
This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer
Resumo:
The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.
Resumo:
Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC
Resumo:
A necessidade que as indústrias têm, hoje em dia, de lidar com processos cada vez mais complexos, onde a quantidade de variáveis a controlar e restrições processuais a impor aumentou exponencialmente nas últimas décadas. Uma maior competitividade e eficiência, lado-a-lado com a redução de custos, proporcionou à comunidade científica e industrial explorar mais profundamente o controlo de processos, com vista à construção de técnicas avançadas para fazer face a estas exigências. O controlo preditivo baseado em modelos - MPC- engloba diversas classes de controladores que utilizam algoritmos de predição/previsão e modelos matemáticos representativos do sistema, que juntamente com restrições processuais permitem operar junto de referências e tornar o controlo mais eficiente e seguro. O sucesso do MPC nos sistemas lineares com restrições deve-se, sobretudo, ao facto de reduzir o problema de optimização a um problema de programação quadrática, de fácil implementação e resolução. Além do mais, trata-se de um tipo de controlo bastante flexível e, ao mesmo tempo, mais robusto que o controlo clássico ou convencional, já que pode lidar com processos multivariáveis sem precisar de alterações significativas na sua construção. Neste trabalho aplicam-se técnicas de controlo preditivo a processos não lineares multivariáveis. Estuda-se, ainda, o desempenho desta classe de controladores comparando-a com técnicas de controlo convencional. Nomeadamente, estuda-se um sistema de três tanques em que o caudal é manipulado através de válvulas com característica não linear. O processo é modelado através de princípios de conservação e é validado por um conjunto real de ensaios que permitiu, ainda, obter experimentalmente a característica das válvulas. O modelo validado permitiu desenvolver um controlador preditivo multivariável para controlar os níveis da instalação. Demonstra-se que os controladores preditivos apresentam grandes vantagens em relação ao controlo clássico com malhas independentes.
Resumo:
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo
Resumo:
The Predictive Controller has been receiving plenty attention in the last decades, because the need to understand, to analyze, to predict and to control real systems has been quickly growing with the technological and industrial progress. The objective of this thesis is to present a contribution for the development and implementation of Nonlinear Predictive Controllers based on Hammerstein model, as well as to its make properties evaluation. In this case, in the Nonlinear Predictive Controller development the time-step linearization method is used and a compensation term is introduced in order to improve the controller performance. The main motivation of this thesis is the study and stability guarantee for the Nonlinear Predictive Controller based on Hammerstein model. In this case, was used the concepts of sections and Popov Theorem. Simulation results with literature models shows that the proposed approaches are able to control with good performance and to guarantee the systems stability
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
Neste trabalho serão apresentados os resultados da avaliação experimental de uma metodologia de controle digital preditivo auto-ajustavel aplicada ao controle de tensão de um sistema de geração de energia de escala reduzida. Um estimador recursivo baseado no conhecido método de mínimos quadrados é utilizado na etapa de identificação do controlador preditivo proposto. A etapa de cálculo da lei de controle é realizada com o algoritmo Generalized Predictive Controller (GPC). A avaliação experimental foi realizada com testes de resposta ao degrau e rastreamento aplicados em diferentes condições operacionais do sistema de potência estudado. Para fins de comparação, também serão apresentados os resultados da avaliação de um controlador auto-ajustável que utiliza o método de alocação de pólos para a síntese do sinal de controle e três controladores digitais com parâmetros fixos.
Resumo:
Esta dissertação desenvolve uma plataforma de controlo interactiva para edifícios inteligentes através de um sistema SCADA (Supervisory Control And Data Acquisition). Este sistema SCADA integra diferentes tipos de informações provenientes das várias tecnologias presentes em edifícios modernos (controlo da ventilação, temperatura, iluminação, etc.). A estratégia de controlo desenvolvida implementa um controlador em cascada hierárquica onde os "loops" interiores são executados pelos PLC's locais (Programmable Logic Controller), e o "loop" exterior é gerido pelo sistema SCADA centralizado, que interage com a rede local de PLC's. Nesta dissertação é implementado um controlador preditivo na plataforma SCADA centralizada. São apresentados testes efectuados para o controlo da temperatura e luminosidade de salas com uma grande área. O controlador preditivo desenvolvido tenta optimizar a satisfação dos utilizadores, com base nas preferências introduzidas em várias interfaces distribuídas, sujeito às restrições de minimização do desperdício de energia. De forma a executar o controlador preditivo na plataforma SCADA foi desenvolvido um canal de comunicação para permitir a comunicação entre a aplicação SCADA e a aplicação MATLAB, onde o controlador preditivo é executado. ABSTRACT: This dissertation develops an operational control platform for intelligent buildings using a SCADA system (Supervisory Control And Data Acquisition). This SCADA system integrates different types of information coming from the several technologies present in modem buildings (control of ventilation, temperature, illumination, etc.). The developed control strategy implements a hierarchical cascade controller where inner loops are performed by local PLCs (Programmable Logic Controller), and the outer loop is managed by the centralized SCADA system, which interacts with the entire local PLC network. ln this dissertation a Predictive Controller is implemented at the centralized SCADA platform. Tests applied to the control of temperature and luminosity in hugearea rooms are presented. The developed Predictive Controller tries to optimize the satisfaction of user explicit preferences coming from several distributed user-interfaces, subjected to the constraints of energy waste minimization. ln order to run the Predictive Controller at the SCADA platform a communication channel was developed to allow communication between the SCADA application and the MATLAB application where the Predictive Controller runs.
Resumo:
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo