Controle preditivo neural aplicado à processos petroquímicos
Contribuinte(s) |
Maitelli, André Laurindo CPF:01186168463 CPF:42046637100 http://lattes.cnpq.br/0477027244297797 Araújo, Fábio Meneghetti Ugulino de CPF:82675090468 http://lattes.cnpq.br/5473196176458886 Gabriel Filho, Oscar CPF:11376040697 http://lattes.cnpq.br/4171033998524192 |
---|---|
Data(s) |
17/12/2014
18/11/2010
17/12/2014
07/08/2009
|
Resumo |
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo |
Formato |
application/pdf |
Identificador |
POPOFF, Luiz Henrique Gomes. Controle preditivo neural aplicado à processos petroquímicos. 2009. 94 f. Dissertação (Mestrado em Pesquisa e Desenvolvimento em Ciência e Engenharia de Petróleo) - Universidade Federal do Rio Grande do Norte, Natal, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/12922 |
Idioma(s) |
por |
Publicador |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Ciência e Engenharia do Petróleo Pesquisa e Desenvolvimento em Ciência e Engenharia de Petróleo |
Direitos |
Acesso Aberto |
Palavras-Chave | #Rede neural artificial #Controle avançado #Controle preditivo #Artificial neural network #Advanced control #Predictive control #CNPQ::ENGENHARIAS |
Tipo |
Dissertação |