885 resultados para Coated Conductor
Resumo:
The problem of excitation of 11zultilayercd-graded-dielectric-coatedc onductor by a magnetic ring source is fornzulated in the ,form of a contour integrul which is rolved by using the method of steepest descent. Numerical evaluation of launching efiiency shows that high value of about 90 percent can be attained by choosing proper dimensions of the launcher with respect to the dimension of the surface wave line.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A single-phase superconducting fault current limiter (SFCL) using a 0.9 m length of YBCO coated conductor (CC) tape was tested in 220 V-60 Hz line for fault current up to 1 kA, operating in 77 K. In this work are presented the IN experimental curves measured under DC and AC currents for the electrical characterization of the CC tape in order to design a low voltage current limiter. The experimental setup is described and the test results are presented for a unit conducting a steady nominal AC current of 50 A and also during the fault time (I to 5 cycles.) the performance of the CC-based SFCL providing the limiting resistance developed in the whole tape length after few milliseconds of the beginning of the fault was analyzed.
Resumo:
In this work, we report on the evaluation of a superconducting fault current limiter (SFCL). It is consisted of a modular superconducting device combined with a short-circuited transformer with a primary copper winding connected in series to the power line and the secondary side short-circuited by the superconducting device. The basic idea is adding a magnetic component to contribute to the current limitation by the impedance reflected to the line after transition of the superconducting device. The evaluation tests were performed with a prospective current up to 2 kA, with the short-circuited transformer of 2.5 kVA, 220 V/660 V connected to a test facility of 100 kVA power capacity. The resistive SFCL using a modular superconducting device was tested without degradation for a prospective fault current of 1.8 kA, achieving the limiting factor 2.78; the voltage achieved 282 V corresponding to an electric field of 11 V/m. The test performed with the combined SFCL (xsuperconducting device + transformer) using series and toroidal transformers showed current limiting factor of 3.1 and 2 times, respectively. The test results of the combined SFCL with short-circuited transformer showed undesirable influence of the transformer impedance, resulting in reduction of the fault current level. © 2002-2011 IEEE.
Resumo:
A superconducting fault current limiter (SCFL) consisted of a transformer with low reactance connected to the power line and with the secondary winding short-circuited by a modular superconducting limiter device with 16 elements connected in series was constructed and tested. The designed coupling transformer has low dispersion reactance in order to limit the voltage drop in the power line within the range of 5 % to 10 %. The experimental results showed that an insertion of a 0.125 Omega resistance limited the peak current to a factor of 2.5 times of the unlimited current. The power dissipation reached 39 kW during 100 ms, with an energy density of 380 J/cm(3). Based on these results, the SCFL will be further tested in a 3 MVA (15 kV/380 V) generator for currents up to 10 kA.
Resumo:
The authors have doped RABiTS coated conductor tapes with Ca in an attempt to enhance the transport properties. By diffusing Ca into the YBCO film from a CaZrO3 overlayer, the authors have been able to preferentially dope the grain boundaries of the superconductor. Hence it has been possible to obtain doped tapes which do not have a significantly degraded T-c. The authors have measured the critical currents of doped and undoped samples over a wide range of temperature, magnetic field, and magnetic field angle in order to study the effect of Ca on the grain boundaries. The authors find that doping using short anneal times produces enhanced critical currents in large magnetic fields.
Resumo:
This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.
Resumo:
A superconducting magnetic shield can be built as a stack of several sections of milled 2G coated conductors. Each section consists of a closed loop where persistent currents can flow and provide a strong attenuation of external dc magnetic fields. The purpose of the present work is to study experimentally several geometries of such magnetic shields made out of YBa2Cu 3O7 (YBCO) coated conductors from SuperPower. Our aim is to investigate in detail the influence of the aspect ratio and the number of layers of the assembly on the magnetic shielding properties. In order to do so, the magnetic shield is subjected to an axial quasi-static ('dc') magnetic field ramped slowly at a fixed sweep rate. A Hall probe is used to measure the local magnetic induction inside the assembly as a function of the applied magnetic induction. Results show that the shielding factor, SF, (defined as the ratio between the applied magnetic induction and the magnetic induction measured inside the shield) is improved for increasing aspect ratios of the global coated conductor assembly and that the threshold magnetic induction (defined for SF = 10) increases with the number of layers. Using a double layer of 18 sections at T = 77K , dc magnetic fields up to 56 mT can be shielded by a factor larger than 10. Finally, the effect of an air gap of constant width between coated conductor sections is also characterized. © 2002-2011 IEEE.
Resumo:
Depending on the temperature and the magnitude and orientation of an external magnetic field, the critical current density, J c , of a coated conductor can be limited either by the properties of the grain boundaries or by those of the grains. In order to ascertain what governs J c under different conditions, we have measured straight and curved tracks, patterned into RABiTS-MOD samples, while a magnetic field was swept in the plane of the films. Significantly different results were obtained at different field and temperature ranges, which we were able to attribute to J c being limited by either grain boundaries or grains.
Resumo:
Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3 (001) substrate by metal organic deposition method. All YBCO films were fired at 820 degrees C in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed J(c) value of 3.3 MA/cm(2) at 77 K in self-field.
Resumo:
In order to design a High Temperature Superconducting (HTS) machine that is able to operate safely and reliably, studies on the characterization of Second Generation (2G) HTS tapes are of paramount importance. This paper presents an experimental setup to measure critical current of 2G HTS tapes in high DC magnetic fields (up to 5 Tesla) with an AC current ripple superimposed, as well as various temperatures ranging from 25 K to 77 K. The 2G tape measured is the SGS12050 coated conductor made by SuperPower. The critical current is measured by a flux vector with reference to the widest sample face from 0 to 90 degrees in 10 degree steps. Smaller steps are required close to 0 . A Variable Temperature Insert (VTI) is utilized to control temperature change. © 2010 IEEE.
Resumo:
The critical current density Jc of an MOCVD/IBAD coated conductor was measured on tracks patterned longitudinally (L) and transversely (T) to the tape direction. Despite the samples' vicinality no dependence J c of on track direction was found for magnetic fields applied perpendicular to the film plane. In angular out-of-plane measurements the previously reported asymmetry due to tilted precipitate planes was observed in an L track, whereas curves from a T track were almost perfectly symmetric with similarly high absolute values of Jc. At low fields the effects of surface pinning were seen. Our results show that in most scenarios the current carrying capability is equally as good parallel and perpendicular to the tape direction, which is highly relevant for ROEBEL cables. In measurements where the magnetic field was swept in the film plane the anisotropy was found to be significantly higher than for MOD/RABiTS samples, which we explain by the different morphology of grain boundaries in the tapes. At low temperatures Jc of a T track exhibited a clear signature of vortex channeling. © 2010 IEEE.