486 resultados para Clostridium thermocellum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatic cellulose degradation is a heterogeneous reaction requiring binding of soluble cellulase molecules to the solid substrate. Based on our studies of the cellulase complex of Clostridium thermocellum (the cellulosome), we have previously proposed that such binding can be brought about by a special "anchorage subunit." In this "anchor-enzyme" model, CipA (a major subunit of the cellulosome) enhances the activity of CelS (the most abundant catalytic subunit of the cellulosome) by anchoring it to the cellulose surface. We have subsequently reported that CelS contains a conserved duplicated sequence at its C terminus and that CipA contains nine repeated sequences with a cellulose binding domain (CBD) in between the second and third repeats. In this work, we reexamined the anchor-enzyme mechanism by using recombinant CelS (rCelS) and various CipA domains, CBD, R3 (the repeat next to CBD), and CBD/R3, expressed in Escherichia coli. As analyzed by non-denaturing gel electrophoresis, rCelS, through its conserved duplicated sequence, formed a stable complex with R3 or CBD/R3 but not with CBD. Although R3 or CBD alone did not affect the binding of rCelS to cellulose, such binding was dependent on CBD/R3, indicating the anchorage role of CBD/R3. Such anchorage apparently increased the rCelS activity toward crystalline cellulose. These results substantiate the proposed anchor-enzyme model and the expected roles of individual CipA domains and the conserved duplicated sequence of CelS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sporulation is a process in which some bacteria divide asymmetrically to form tough protective endospores, which help them to survive in a hazardous environment for a quite long time. The factors which can trigger this process are diverse. Heat, radiation, chemicals and lacking of nutrition can all lead to the formation of endospores. This phenomenon will lead to low productivity during industrial production. However, the sporulation mechanism in a spore-forming bacterium, Clostridium theromcellum, is still unclear. Therefore, if a regulation network of sporulation can be built, we may figure out ways to inhibit this process. In this study, a computational method is applied to predict the sporulation network in Clostridium theromcellum. A working sporulation network model with 40 new predicted genes and 4 function groups is built by using a network construction program, CINPER. 5 sets of microarray expression data in Clostridium theromcellum under different conditions have been collected. The analysis shows the predicted result is reasonable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: To elucidate whether a dominant uncultured clostridial (Clostridium thermocellum-like) species in an environmental sample (landfill leachate), possesses an autoinducing peptide (AIP) quorum-sensing (QS) gene, although it may not be functional. Methods and Results: A modified AIP accessory gene regulator (agr)C PCR protocol was performed on extracted DNA from a landfill leachate sample (also characterized by 16S rRNA gene cloning) and the PCR products were cloned, sequenced and phylogenetically analysed. It appeared that two agrC gene phylotypes existed, most closely related to the C. thermocellum agrC gene, differing by only 1 bp. Conclusions: It is possible to specifically identify and characterize the agrC AIP QS gene from uncultured Firmicutes (C. thermocellum-like) bacteria derived from environmental (landfill leachate) sample. Significance and Impact of the Study: This is the first successful attempt at identifying AIP QS genes from a cellulolytic environment (landfill). The agrC gene was identified as being most closely related to the C. thermocellum agrC gene, the same bacterium identified as being dominant, according to 16S rRNA gene cloning and subsequently fluorescence in situ hybridization analyses, in the same biomass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica – Ramo Bioquímica Estrutural

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A celulose, principal componente da parede celular vegetal e o composto orgânico mais abundante da biosfera, possui inúmeras aplicações biotecnológicas. O microrganismo anaeróbio Clostridium thermocellum (C.thermocellum) tem sido alvo de grande interesse pela sua capacidade em degradar eficientemente a celulose e outros componentes da parede celular vegetal, por meio de um complexo multi-enzimático altamente eficiente, denominado de celulossoma. A montagem deste complexo ocorre através de uma proteína multi-modular denominada CipA. Esta proteína estrutural possui módulos não catalíticos (coesinas tipo I) que se ligam a módulos complementares (doquerinas tipo I) presentes nas enzimas celulolíticas modulares. A CipA possui ainda um módulo doquerina de tipo II que permite a ancoragem deste complexo multi-enzimático à parede celular da bactéria. Na presente dissertação foram utilizadas as metodologias de Cristalografia de Raios-X, para caracterizar a interação coesina-doquerina a nível atómico e molecular, e de Microarrays, com o intuito de estudar as possíveis especifidades e afinidades dessas interações. Com base na primeira técnica foram elucidadas as estruturas do módulo coesina C4 da CipA em complexo com a doquerina da enzima modular Xyn10B e do módulo coesina C9 isolado. As estruturas foram comparadas com o complexo do módulo coesina C2-doquerina Xyn10B já publicado. Esta análise encontra-se descrita no capítulo 3. Por último, a técnica de Microarrays, associada à eletroforese em gel de poliacrilamida em condições nativas, permitiu a caracterização das diferenças de afinidade e especificidade entre os vários pares coesina-doquerina dos celulossomas de C. thermocellum e de Rumminococcus flavefaciens (R. flavefaciens). As especificidades e afinidades dos módulos doquerina, dos celulossomas mencionados anteriormente estão descritas no capítulo 4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCe15A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cohesin-dockerin interaction in Clostridium thermocellum cellulosome mediates the tight binding of cellulolytic enzymes to the cellulosome-integrating protein CipA. Here, this interaction was used to study the effect of different cellulose-binding domains (CBDs) on the enzymatic activity of C. thermocellum endoglucanase CelD (1,4-β-d endoglucanase, EC3.2.1.4) toward various cellulosic substrates. The seventh cohesin domain of CipA was fused to CBDs originating from the Trichoderma reesei cellobiohydrolases I and II (CBDCBH1 and CBDCBH2) (1,4-β-d glucan-cellobiohydrolase, EC3.2.1.91), from the Cellulomonas fimi xylanase/exoglucanase Cex (CBDCex) (β-1,4-d glucanase, EC3.2.1.8), and from C. thermocellum CipA (CBDCipA). The CBD-cohesin hybrids interacted with the dockerin domain of CelD, leading to the formation of CelD-CBD complexes. Each of the CBDs increased the fraction of cellulose accessible to hydrolysis by CelD in the order CBDCBH1 < CBDCBH2 ≈ CBDCex < CBDCipA. In all cases, the extent of hydrolysis was limited by the disappearance of sites accessible to CelD. Addition of a batch of fresh cellulose after completion of the reaction resulted in a new burst of activity, proving the reversible binding of the intact complexes despite the apparent binding irreversibility of some CBDs. Furthermore, burst of activity also was observed upon adding new batches of CelD–CBD complexes that contained a CBD differing from the first one. This complementation between different CBDs suggests that the sites made available for hydrolysis by each of the CBDs are at least partially nonoverlapping. The only exception was CBDCipA, whose sites appeared to overlap all of the other sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to conduct a number of controlled digestions to obtain easily comparable cellulose solubilisation rates and to compare these rates to those found in the literature to see which operational differences were significant in affecting cellulose degradation during anaerobic digestion. The results suggested that differences in volumetric cellulose solubilisation rates were not indicative of the true performance of cellulose digestion systems. When cellulose solubilisation rates were normalised by the mass of cellulose in the reactor at each time step, the comparison of the rates became more meaningful. Cellulose solubilisation was surface area limited. Therefore, changes in the loading rate of cellulose to the reactor altered the volumetric solubilisation rate without changing the mass normalised rate. Comparison of mass normalised solubilisation rates from this study and the literature demonstrated that differences in reactor configuration and operational conditions did not significantly impact on the solubilisation rate whereas the difference in composition of the microbial communities showed a marked effect. This work highlights the importance of using appropriately normalised data when making comparisons between systems with differing operational conditions. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to isolate psychrotrophic clostridia from Brazilian vacuum-packed beef cuts (spoiled or not) and to identify the isolates by using 16S rRNA gene sequencing. Anaerobic psychrotrophic microorganisms were also enumerated and samples were collected to verify the incidence of psychrotrophic clostridia in the abattoir environment. Vacuum-packed beef cuts (n = 8 grossly distended and n = 5 non-spoiled) and environmental samples were obtained from a beef packing plant located in the state of Sao Paulo, Brazil. Each sample was divided in three subsamples (exudate, beef surface and beef core) that were analyzed for vegetative forms, total spore-forming, and sulfide reducing spore-forming, both activated by alcohol and heat. Biochemical profiles of the isolates were obtained using API20A, with further identification using 16S rRNA gene sequencing. The growth temperature and the pH range were also assessed. Populations of psychrotrophic anaerobic vegetative microorganisms of up to 10(10) CFU/(g, mL or 100 cm(2)) were found in `blown pack` samples, while in non-spoiled samples populations of 10(5) CFU/(g, CFU/mL or CFU/100cm(2)) was found. Overall, a higher population of total spores and sulfide reducing spores activated by heat in spoiled samples was found. Clostridium gasigenes (n = 10) and C. algidicarnis (n = 2) were identified using 16S rRNA gene sequencing. Among the ten C. gasigenes isolates, six were from spoiled samples (C1, C2 and C9), two were isolated from non-spoiled samples (C4 and C5) and two were isolated from the hide and the abattoir corridor/beef cut conveyor belt. C. algidicarnis was recovered from spoiled beef packs (C2). Although some samples (C3, C7, C10 and C14) presented signs of `blown pack` spoilage, Clostridium was not recovered. C. algidicarnis (n = 1) and C. gasigenes (n = 9) isolates have shown a psychrotrophic behavior, grew in the range 6.2-8.2. This is the first report on the isolation of psychrotrophic Clostridium (C. gasigenes and C. algidicarnis) in Brazil. This study shows that psychrotrophic Clostridium may pose a risk for the stability of vacuum-packed beef produced in tropical countries during shelf-life and highlights the need of adopting control measures to reduce their incidence in abattoir and the occurrence of `blown pack` spoilage. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (similar to 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration (similar to 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial,scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 88-92, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Purification of a-toxin produced by Clostridium perfringens type A in aqueous two-phase systems (ATPS) was studied with a full two-level factorial design on two factors (concentrations of 8000 g mol(-1) PEG and phosphate salt at pH 8.0), to estimate the influence of these factors on the purification results. RESULTS: The partition coefficient (K), purification factor (PF) and activity yield (Y) were strongly influenced by the PEG and phosphate concentrations. Raising the levels of the two factors increased these responses. The highest purification factor (5.7) was obtained with PEG and phosphate concentrations of 17.5% and 15%, respectively. CONCLUSION: These results support the proposal that polymer excluded volume and hydrophobic interactions are the factors that drive the alpha-toxin in PEG/phosphate aqueous two-phase systems. (c) 2008 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms that hydrolyse the ester linkages between phenolic acids and polysaccharides in plant cell walls are potential sources of enzymes for the degradation of lignocellulosic waste. An anaerobic, mesophilic, spore-forming, xylanolytic bacterium with high hydroxy cinnamic acid esterase activity was isolated from the gut of the grass-eating termite Tumilitermes pastinator. The bacterium was motile and rod-shaped, stained gram-positive, had an eight-layered cell envelope, and.formed endospores. Phylogenetic analysis based on 16S rRNA indicated that the bacterium is closely related to Clostridium xylanolyticum and is grouped with polysaccharolytic strains of clostridia. A wide range of carbohydrates were fermented, and growth was stimulated by either xylan or cellobiose as substrates. The bacterium hydrolysed and then hydrogenated the hydroxy cinnamic acids (ferulic and p-coumaric acids), which are esterified to arabinoxylan in plant cell walls. Three cytoplasmic enzymes with hydroxy cinnamic acid esterase activity were identified using non-denaturing gel electrophoresis. This bacterium possesses an unusual multilayered cell envelope in which both leaflets of the cytoplasmic membrane, the peptidoglycan layer and the S layer are clearly discernible. The fate of all these components was easily followed throughout the endospore formation process. The peptidoglycan component persisted during the entire morphogenesis. It was seen to enter the septum and to pass with the engulfing membranes to surround the prespore. It eventually expanded to form the cortex, verification for the peptidoglycan origin of the cortex. Sporogenic vesicles, which are derived from the cell wall peptidoglycan, were associated with the engulfment process. Spore coat fragments appeared early, in stage II, though spore coat formation was not complete until after cortex formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the effect of initial substrate concentration on COD consumption, pH, and H(2) production during cassava processing wastewater fermentation by Clostridium acetobutylicum ATCC 824. Five initial COD wastewater concentrations, namely 5.0, 7.5, 10.7, 15.0, and 30.0 g/L, were used. The results showed that higher substrate concentrations (30.0 and 15.0 COD/L) led to lower H(2) yield as well as less efficient substrate conversion into H(2). On the other hand, initial COD concentrations of 10.7, 7.5 and 5 g/L furnished 1.34, 1.2 and 2.41 mol H(2)/mol glucose, with efficiency of glucose conversion into H(2) of 34, 30, and 60% (mol/mol), respectively. These results demonstrate that cassava processing wastewater, a highly polluting effluent, can be successfully employed as substrate for H(2) production by C acetobutylicum at lower COD concentrations. (C) 2011 Elsevier Ltd. All rights reserved.