13 resultados para Chemosensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C(22)H(14)N(2)O(2), the five rings of the molecule are not coplanar. There is a significant twist between the four fused rings, which have a slightly arched conformation, and the pendant aromatic ring, as seen in the dihedral angle of 13.16 (8)degrees between the anthraquinonic ring system and the pendant aromatic ring plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To optimize photosynthesis, cyanobacteria move toward or away from a light source by a process known as phototaxis. Phototactic movement of the cyanobacterium Synechocystis PCC6803 is a surface-dependent phenomenon that requires type IV pili, cellular appendages implicated in twitching and social motility in a range of bacteria. To elucidate regulation of cyanobacterial motility, we generated transposon-tagged mutants with aberrant phototaxis; mutants were either nonmotile or exhibited an “inverted motility response” (negative phototaxis) relative to wild-type cells. Several mutants contained transposons in genes similar to those involved in bacterial chemotaxis. Synechocystis PCC6803 has three loci with chemotaxis-like genes, of which two, Tax1 and Tax3, are involved in phototaxis. Transposons interrupting the Tax1 locus yielded mutants that exhibited an inverted motility response, suggesting that this locus is involved in controlling positive phototaxis. However, a strain null for taxAY1 was nonmotile and hyperpiliated. Interestingly, whereas the C-terminal region of the TaxD1 polypeptide is similar to the signaling domain of enteric methyl-accepting chemoreceptor proteins, the N terminus has two domains resembling chromophore-binding domains of phytochrome, a photoreceptor in plants. Hence, TaxD1 may play a role in perceiving the light stimulus. Mutants in the Tax3 locus are nonmotile and do not make type IV pili. These findings establish links between chemotaxis-like regulatory elements and type IV pilus-mediated phototaxis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic mixtures of Rh-dye complexes can be used to determine the history of chemical events such as the addition of ATP and ADP by UV-vis spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-step experiment is proposed for a third year class in experimental organic chemistry. Over a period of five weeks, the students synthesized calix[4]pyrrole, a receptor that is highly selective for fluoride, and a pyridinium N-phenolate dye. Subsequently, the students used the synthesized compounds to investigate a displacement assay on the basis of the competition in acetonitrile between fluoride and the dye for calix[4]pyrrole. The experiment increased the students' skills in organic synthesis and in the characterization of organic compounds, provided a very attractive and accessible illustration of important supramolecular phenomena, and allowed the study of a chromogenic chemosensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The novel coumarin-based 'turn-on' fluorescent probe (E)-3-(2,5-dimethoxybenzylideneamino)-7-hydroxy-2H-chromen-2-one (MGM) was designed, synthesized, and characterized. This compound shows high selectivity for Cu+2, combined with a large fluorescence enhancement upon binding to Cu2+. Benesi-Hildebrand and Job plots demonstrate that the stoichiometry of the Cu+2 complex formed is 2:1. Preliminary studies employing epifluorescence microscopy demonstrated that Cu+2 could be imaged in human neuroblastoma SH-SY5Y cells treated with MGM. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurde die Bindung von Koffein und verwandten Oxopurinen in C¬3-symmetrischen Rezeptoren auf der Basis von Triphenylenketalen untersucht. Dabei stand vor allem die Evaluierung für eine spätere Anwendung im Vordergrund. Für die Anwendung als Chemosensor wurden mehrere optische Verfahren getestet. Die Verwendung von UV/Vis-Spektroskopie gelingt nur unter Einsatz eines elektronenarmen Konkurrenzgastes, welcher durch das stärker bindende Koffein unter Entfärbung verdrängt wird. Obwohl dieser Effekt sogar mit bloßem Auge zu erkennen ist und somit eine einfache Untersuchung ermöglichen würde, machen die besondere Reaktivität des Konkurrenzgastes und dessen geringe Affinität zum Rezeptor eine weitere Anwendung als Chemosensor für Koffein unwahrscheinlich. Den entscheidenden Durchbruch lieferte der Wechsel auf Fluoreszenzspektroskopie. Die Bindung von Gästen lässt sich mit dieser Methode direkt beobachten und für quantitative Studien nutzen. Die Signalzunahme bei Zugabe von Koffein liegt bei maximal 30%. Durch Verwendung eines vom Koffein abgeleiteten Konkurrenzgastes können weitere Verbesserungen erzielt werden. So konnte eine maximale Signaldynamik von fast 400% erzielt werden. Durch die Entwicklung eines geeigneten Probenvorbereitungsprotokolls war es möglich, mit dem fluoreszenzbasierten System einen Nachweis von Koffein an kommerziell verfügbaren Getränkeproben durchzuführen. Die Ergebnisse waren in guter Übereinstimmung mit HPLC-Kontrollexperimenten. Die Eignung von Rezeptoren auf Triphenylenketalbasis für die enantiofaciale Differenzierung an Heteroaromaten wurde durch Untersuchung verschiedener Wirt-Gast-Komplexe mittels CD-Spektroskopie und Tieftemperatur-NMR systematisch demonstriert. Rezeptoren mit Menthyl-Substituenten liefern laut NMR die stärkste Seitendifferenzierung. Anhand des CD wird ein vollständiges und schlüssiges Bild über den Zusammenhang zwischen dem Raumbedarf am Gast, der Ausrichtung der chiralen Gruppen am Wirt und dem erhaltenen CD hergestellt. Durch umfangreiche molekulardynamische Simulationen und nachfolgende semiempirische Berechnungen wurden Referenzspektren berechnet, welche die Zuordnung der Stereochemie anhand des CD eindeutig belegen. Die Ergebnisse sind zudem in guter Übereinstimmung mit den Ergebnissen aus röntgenkristallographischen Untersuchungen. (Diese Methode ließ sich erfolgreich auf die helicale Faltung von Alkanen in Kapseln von Rebek, jr. umsetzen.) Obwohl die Energieunterschiede zwischen den diastereomeren Komplexen klein sind, konnte anhand der CD-Spektroskopie somit erstmalig die enantiofaciale Differenzierung an einem heterocyclischen System bei Raumtemperatur beobachtet werden. Die beste enantiofaciale Differenzierung erzielen die Menthyl-abgeleiteten Rezeptoren. Diese sind hinsichtlich einer möglichen Anwendung als chirales „Auxiliar“ ungeeignet, da sie mit den sperrigen Cyclohexylgruppen auch den Raum oberhalb des gebundenen Gastes blockieren. Daher wird für die weitere Entwicklung auf die praktische Einführung chiraler Information in Form des Isocyanats verzichten werden müssen. Stattdessen zielen aktuelle Bemühungen auf den Aufbau chiraler Rückgrate, welche den Raum in der unteren Peripherie des Gastes beeinflussen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanosine 3′,5′-cyclic monophosphate (cGMP) plays a role as a second messenger in many different biological systems. Given the ubiquitous nature of cGMP, a simple method of detecting cGMP is of interest. To that end a fluorescent polymer with recognition sites for cGMP has been prepared. Its selectivity and sensitivity were investigated and a dose-dependant decrease in fluorescence of the polymer in the presence of cGMP was observed. In contrast, virtually no effect was detected upon application of the structurally similar molecules, guanosine 5′-monophosphate (GMP) and adenosine 3′,5′-cyclic monophosphate (cAMP), thus demonstrating the high selectivity of this polymer. The association constant for the binding of cGMP to the imprinted polymer was determined in order of 3 × 10 5 M -1. A fluorescent, molecularly imprinted polymer that selectively recognises cGMP may have a useful application as a fluorescent chemosensor for cGMP detection in biological samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of heterocyclic compounds, as quinoxaline derivatives, has being shown to be relevant and promissor due to expressive applications in biological and technological areas. This work was dedicated to the synthesis, characterization and reactivity of quinoxaline derivatives in order to obtain new chemosensors. (L)-Ascorbic acid (1) and 2,3-dichloro-6,7- dinitroquinoxalina (2) were explored as synthetic precursors. Starting from synthesis of 1 and characterization of compounds derived from (L)-ascorbic acid, studies were performed investigating the application of products as chemosensors, in which compound 36 demonstrated selective affinity for Cu2+ íons in methanolic solution, by naked-eye (colorimetric) and UVvisible analyses. Further, initial analysis suggests that 39 a Schiff’s base derived from 36 also presents this feature. Five quinoxaline derivatives were synthesized from building block 2 through nucleophilic aromatic substitution by aliphatic amines, in which controlling the experimental conditions allows to obtain both mono- and di-substituted derivatives. Reactivity studies were carried out with two purposes: i) investigate the possibility of 47 compound being a chemosensor for anion, based on its interaction with sodium hydroxide in DMSO, using image analysis and UV-visible spectroscopy; ii) characterize kinetically the conversion of compound 44 into 46 based on RGB and multivariate image analysis from TLC data, as a simple and inexpensive qualitative and quantitative tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O trabalho descrito nesta dissertação envolve a síntese e caracterização de novos macrociclos tetrapirrólicos e afins com potencial aplicação como quimiossensores de aniões, tanto em solução como quando suportados em diferentes materiais. As porfirinas e ftalocianinas ocupam um lugar de destaque nesta dissertação, pelo que no primeiro capítulo, é feita uma revisão bibliográfica acerca das suas metodologias de síntese bem como das suas principais características e aplicações, nomeadamente como quimiossensores de aniões. No segundo capítulo é discutida a síntese e caracterização dos compostos porfirínicos e ftalocianinicos com grupos amina ou poliamina, posteriormente utilizados como hospedeiros de aniões. Descrevem-se, pormenorizadamente, os métodos de síntese, purificação e caracterização estrutural dos diversos compostos sintetizados. No terceiro capítulo realizaram-se os estudos de complexação com aniões em solução e determinaram-se as respetivas constantes de afinidade. Os compostos sintetizados apresentam capacidade de interagir com diferentes aniões. As porfirinas testadas apresentam elevadas constantes de afinidade para o anião di-hidrogenofosfato, mesmo em soluções aquosas quando testadas com cristais piezoelétricos. No caso das ftalocianinas verificou-se que estas interagem com vários aniões e apresentam propriedades cromogénicas, podendo mesmo distinguir aniões cianeto em soluções contendo água. No quarto capítulo estudou-se a imobilização dos quimiossensores, que demonstraram maior eficácia nos estudos de reconhecimento em solução, em diferentes materiais. Primeiro foi estudada a imobilização dos quimiossensores em nanopartículas de sílica (com e sem núcleo magnético) e testada a sua capacidade como sensor de aniões em solução. Numa segunda parte foi estudada a imobilização em fibras óticas. Estas, além das suas excecionais propriedades físico-químicas, têm a vantagem de poderem ser integradas em diferentes estruturas e/ou equipamentos de análise. Na ultima parte desta dissertação encontra-se a descrição da síntese e caracterização de novos conjugados porfirina-C60-OligoDNA com potencial aplicação em transferência eletrónica. Foram sintetizados e caracterizados novos compostos porfirina-OligoDNA e C60-OligoDNA. Esta parte do trabalho foi realizada no “Institute of Advanced Energy” na Universidade de Quioto, Japão.