951 resultados para Catalyst selectivity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce projet de recherche consiste en l’étude de la réactivité et de la sélectivité de nouveaux catalyseurs de métathèse d’oléfines à base de ruthénium lors de réaction de fermeture de cycle par métathèse d’oléfines (RCM). L’emphase de cette étude repose sur l’évaluation de nouveaux catalyseurs possédant un ligand NHC (carbène N-hétérocyclique) C1-symétrique développés par le laboratoire Collins pour des réactions de désymétrisations asymétriques de méso-triènes par ARCM. Le projet a été séparé en deux sections distinctes. La première section concerne la formation d’oléfines trisubstituées par ARCM de méso-triènes. La seconde section consiste en la formation d’oléfines tétrasubstituées par le biais de la RCM de diènes et de la ARCM de méso-triènes. Il est à noter qu’il n’y a aucun précédent dans la littérature concernant la formation d’oléfines tétrasubstituées suite à une désymétrisation par ARCM. Lors de l’étude concernant la formation d’oléfines trisubstituées, une étude de cinétique a été entreprise dans le but de mieux comprendre la réactivité des différents catalyseurs. Il a été possible d’observer que le groupement N-alkyle a une grande influence sur la réactivité du catalyseur. Une étude de sélectivité a ensuite été entreprise pour déterminer si le groupement N-alkyle génère aussi un effet sur la sélectivité des catalyseurs. Cette étude a été effectuée par l’entremise de réactions de désymétrisation d’une variété de méso-triènes. En ce qui a trait à la formation d’oléfines tétrasubstituées, une étude de la réactivité des différents catalyseurs a été effectuée par l’intermédiaire de malonates de diéthyldiméthallyle. Il a encore une fois a été possible d’observer que le groupement N-alkyle possède un effet important sur la réactivité du catalyseur. Une étude de sélectivité a ensuite été entreprise pour déterminer si le groupement iv N-alkyle génère aussi un effet sur la sélectivité des catalyseurs. Cette étude a été effectuée par l’entremise de réactions de désymétrisation de différents mésotriènes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalytic activity and selectivity of niobate-based nanostructured materials were investigated. Dry methane reforming (DMR) and ethylene homologation reaction (EHR) were selected as test reactions. KSr 2Nb5O15, Sr2NaNb5O 15 and NaSr2(NiNb4)O15 δ niobate powders were prepared by the high energy ball milling method and calcined in a reductor atmosphere. N2 adsorption isotherms, X-ray diffraction and infrared spectroscopy characterization was performed. Hydrogen pretreated niobates showed from low to moderate catalytic initial activity in DMR's test, nevertheless the materials were deactivated rapidly and the kinetic parameters associated to deactivation were estimated. Otherwise, non-treated catalysts showed a high initial activity in EHR's test and KSr2Nb 5O15 catalyst requires 24 h to the total deactivation with a high selectivity to form propylene. A reaction mechanism to the propylene formation is discussed. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous MCM-41 silica immobilized aluminium chloride shows high catalytic activity and selectivity in the Friedel-Crafts alkylation of naphthalene with isopropanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laktoosi eli maitosokeri on tärkein ainesosa useimpien nisäkkäiden tuottamassa maidossa. Sitä erotetaan herasta, juustosta ja maidosta. Laktoosia käytetään elintarvike- ja lääketeollisuuden raaka-aineena monissaeri tuotteissa. Lääketeollisuudessa laktoosia käytetään esimerkiksi tablettien täyteaineena. Hapettamalla laktoosia voidaan valmistaa laktobionihappoa, 2-keto-laktobionihappoa ja laktuloosia. Laktobionihappoa käytetään biohajoavien pintojen ja kosmetiikkatuotteiden valmistuksessa, sekä sisäelinten säilöntäliuoksissa, joissa laktobionihappo estää happiradikaalien aiheuttamien kudosvaurioiden syntymistä. Tässä työssä laktoosia hapetettiin laktobionihapoksi sekoittimella varustetussa laboratoriomittakaavaisessa panosreaktorissa käyttäenkatalyyttinä palladiumia aktiivihiilellä. Muutamissa kokeissa katalyytin promoottorina käytettiin vismuttia, joka hidastaa katalyytin deaktivoitumista. Työn tarkoituksena oli saada lisää tietoa laktoosin hapettamisen kinetiikasta. Laktoosin hapettumisessa laktobionihapoksi havaittiin selektiivisyyteen vaikuttavan muunmuassa reaktiolämpötila, paine, pH ja käytetyn katalyytin määrä. Katalyyttiä kierrättämällä eri kokeiden välillä saatiin paremmat konversiot, selektiivisyydet ja saannot. Parhaat koetulokset saatiin hapetettaessa synteettisellä ilmalla 60 oC lämpötilassa ja 1 bar paineessa. Tehdyissä kokeissa pH:n säätö tehtiin manuaalisesti, joten pH ei pysynyt koko ajan haluttuna. Laktoosin konversio oli parhaimmillaan 95 %. Laktobionihapon suhteellinen selektiivisyys oli 100% ja suhteellinen saanto 100 %. Kinetiikan matemaattinen mallinnus tehtiin Modest-ohjelmalla käyttäen kokeista saatuja mittaustuloksia.Ohjelman avulla estimoitiin parametreja ja saatiin matemaattinen malli reaktorille. Tässä työssä tehtiin kineettinen mallinnus myös ravistelureaktorissa tehdyille laktoosin hapetuskokeille, missä pH pysyi koko ajan haluttuna 'in-situ' titrauksen avulla. Työn yhteydessä selvitettiin myös mahdollisuutta käyttää monoliittikatalyyttejä laktoosin hapetusreaktiossa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%). The most active prepared catalyst, PdNi(1%), was more selective than the Lindlar catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68%) and selectivity (100%) for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the first use of polystyrene-supported poly(amidoamine) (PAMAM) dendrimers as heterogeneous basic organocatalysts for carbon–carbon bond formation. Polystyrene-supported PAMAM dendrimers of first, second and third generations have been used as reusable base catalysts in Knoevenagel condensations of carbonyl compounds with active methylene compounds. The reactions proceed in short periods of time and with 100% selectivity. This novel catalyst eliminates the use of aromatic and halogenated solvents, as well as complex purification processes. The catalysts can be recycled ten times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study on the anisole methylation with methanol over lanthanum-promoted Sn02 catalyst and its sulfate-doped analogue is presented. A maximum 2.6-xylenol selectivity of 82% was achieved at 400 degreeC under optimized conditions at an anisole conversion of 65% over lanthanum-promoted Sn02 catalyst. The sulfate modification resulted in the dealkylation of anisole to phenol followed by several unselective side reactions due to the creation of strong acid sites. The activity of lanthanum-modified tin oxide catalysts in the selective formation of 2.6-xylenol is ascribed to the presence of weak Lewis acid sites and comparatively stronger basic sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we prepared a new magnetically recoverable CoO catalyst through the deposition of the catalytic active metal nanoparticles of 2-3 nm on silica-coated magnetite nanoparticles to facilitate the solid separation from liquid media. The catalyst was fully characterized and presented interesting properties in the oxidation of cyclohexene, as for example, selectivity to the allylic oxidation product. It was also observed that CoO is the most active species when compared to Co(2+), Co(3)O(4) and Fe(3)O(4) in the catalytic conditions studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cobalt catalysts were prepared on supports of SiO(2) and gamma-Al(2)O(3) by the impregnation method, using a solution of Co precursor in methanol. The samples were characterized by XRD, TPR, and Raman spectroscopy and tested in ethanol steam reforming. According to the XRD results, impregnation with the methanolic solution led to smaller metal crystallites than with aqueous solution, on the SiO(2) support. On gamma-Al(2)O(3), all the samples exhibited small crystallites, with either solvent, due to a higher Co-support interaction that inhibits the reduction of Co species. The TPR results were consistent with XRD results and the samples supported on gamma-Al(2)O(3) showed a lower degree of reduction. In the steam reforming of ethanol, catalysts supported on SiO(2) and prepared with the methanolic solution showed the best H(2), CO(2) and CO selectivity. Those supported on gamma-Al(2)O(3) showed lower H(2) selectivity. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CuO/CeO(2), CuO/Al(2)O(3) and CuO/CeO(2)-Al(2)O(3) catalysts, with CuO loading varying from 1 to 5 wt.%, were prepared by the citrate method and applied to the preferential oxidation of carbon monoxide in a reaction medium containing large amounts of hydrogen (PROX-CO). The compounds were characterized ex situ by X-ray diffraction, specific surface area measurements, temperature-programmed reduction and temperature-programmed reduction of oxidized surfaces; XANES-PROX in situ experiments were also carried out to study the copper oxidation state under PROX-CO conditions. These analyses showed that in the reaction medium the Cu(0) is present as dispersed particles. On the ceria, these metallic particles are smaller and more finely dispersed, resulting in a stronger metal-support interaction than in CuO/Al(2)O(3) or CuO/CeO(2)-Al(2)O(3) catalysts, providing higher PROX-CO activity and better selectivity in the conversion of CO to CO(2) despite the greater BET area presented by samples supported on alumina. It is also shown that the lower CuO content, the higher metal dispersion and consequently the catalytic activity. The redox properties of the ceria support also contributed to catalytic performance. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex of Brookhart Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6- diisopropylphenyl)-acenaphthenediimine) has been characterized after impregnation on silica (S1) and MAO-modified silicas (4.0, 8.0 and 23.0 wts.% Al/SiO2 called S2, S3 and S4, respectively). The treatment of these heterogeneous systems with MAO produces some active catalysts for the polymerization of the ethylene. A high catalytic activity has been gotten while using the system supported 1/S3 (196 kg of PE/mol[Ni].h.atm; toluene, Al/Ni = 1000, 30ºC, 60 min and atmospheric pressure of ethylene). The effects of polymerization conditions have been tested with the catalyst supported in S2 and the best catalytic activity has been gotten with solvent hexane, MAO as cocatalyst, molar ratio Al/Ni of 1000 and to the temperature of 30°C (285 kg of PE/mol[Ni].h.atm). When the reaction has been driven according to the in situ methodology, the activity practically doubled and polymers showed some similar properties. Polymers products by the supported catalysts showed the absence of melting fusion, results similar to those gotten with the homogeneous systems by DSC analysis. But then, polymers gotten with the transplanted system present according to the GPC’s curves the polydispersity (MwD) varies between 1.7 and 7.0. A polyethylene blend (BPE/LPE) was prepared using the complex Ni(α-diimine)Cl2 (1) (α-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {TpMs*}TiCl3 (2) (TpMs* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)) supported in situ on MAO-modified silica (4.0 wts. -% Al/SiO2, S2). Reactions of polymerization of ethylene have been executed in the toluene in two different temperatures (0 and 30°C), varying the molars fraction of nickel (xNi), and using MAO as external cocatalyst. To all temperatures, the activities show a linear variation tendency with xNi and indicate the absence of the effect synergic between the species of nickel and the titanium. The maximum of activity have been found at 0°C. The melting temperature for the blends of polyethylene produced at 0 °C decrease whereas xNi increases indicating a good compatibility between phases of the polyethylene gotten with the two catalysts. The melting temperature for the blends of polyethylene showed be depend on the order according to which catalysts have been supported on the MAO-modified silica. The initial immobilization of 1 on the support (2/1/S2) product of polymers with a melting temperature (Tm) lower to the one of the polymer gotten when the titanium has been supported inicially (1/2/S2). The observation of polyethylenes gotten with the two systems (2/1/S2 and 1/2/S2) by scanning electron microscopy (SEM) showed the spherical polymer formation showing that the spherical morphology of the support to been reproduced. Are described the synthesis, the characterization and the catalytic properties for the oligomerization of the ethylene of four organometallics compounds of CrIII with ligands ([bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine] chromium (III) chloride (3a), [bis[2-(3,5- dimethyl-l-pyrazolyl)ethyl]benzylamine] chromium (III) chloride (3b), [bis[2-(3,5-dimethyl-lpyrazolyl) ethyl]ether] chromiun(III)chloride (3c), [bis[2-(3-phenyl-lpyrazolyl) ethyl]ether]chromiun(III)chloride (3d)). In relation of the oligomerization, at exception made of the compounds 3a, all complex of the chromium showed be active after activation with MAO and the TOF gotten have one effect differentiated to those formed with CrCl3(thf)3. The coordination of a tridentate ligand on the metallic center doesn't provoke any considerable changes on the formation of the C4 and C6, but the amount of C8 are decrease and the C10 and C12+ have increased. The Polymers produced by the catalyst 3a to 3 and 20 bar of ethylene have, according to analyses by DSC, the temperatures of fusion of 133,8 and 136ºC respectively. It indicates that in the two cases the production of high density polyethylene. The molar mass, gotten by GPC, is 46647 g/mols with MwD = 2,4 (3 bar). The system 3c/MAO showed values of TOF, activity and selectivity to different α-olefins according to the pressure of ethylene uses. Himself that shown a big sensibility to the concentration of ethylene solubilized.