995 resultados para Caspase 7
Resumo:
Changes in the levels of intracellular calcium mediate multiple biological effects, including apoptosis, in some tumor cells. Early studies demonstrated that prostate cancer cells are highly sensitive to alterations in the levels of their intracellular calcium pools. Furthermore, it has been established that apoptosis in prostate cancer could be initiated through calcium-selective ionophores, or inhibitors of intracellular calcium pumps. High sensitivity to changes in intracellular calcium levels may therefore be exploited as a novel mechanism for controlling prostate cancer apoptotic thresholds; however, the mechanisms associated with this process are poorly understood. To investigate the role of calcium as a mediator of prostate cancer cell death and its effects on caspase activation, LNCaP and PC-3 cell response to the calcium ionophore A23187, were examined. LNCaP cells were highly sensitive to changes in intracellular calcium, and subtoxic concentrations of A23187 facilitated apoptosis initiated by cytokines (TNF or TRAIL). In contrast, PC-3 cell death was not affected by A23187 or cytokines. A23187 caused rapid and concentration-dependent activation of calpain in LNCaP (but not PC-3 cells) which correlated with cleavage of calpain substrates caspase-7 and PTP1B. Cleavage of PTP1B from a 50 kDa to 42 kDa protein correlated with its translocation from the endoplasmic reticulum to the cytosol and with inhibition of tyrosine phosphorylation. Caspase-7 was cleaved from a 35 kDa to 30 kDa protein in response to A23187 in LNCaP (but not PC-3) cells and correlated with activation of both upstream and downstream caspases. Extracts from A23187-treated LNCaP cells, or PC-3 cells transiently transfected with calpain, mediated similar processing of in vitro transcribed and translated (TNT) caspase-7. In vitro processing of caspase-7 correlated with its proteolytic activation, which was inhibited by calpain inhibitor (calpeptin) and to some degree, by caspase inhibitors (zVAD, DEVD). Together, these results suggest that calpain is directly involved in calcium-mediated apoptosis of prostate cancer cells through activation and cleavage of caspase-7 and other substrates. Loss of calpain activation may therefore play a critical role in apoptotic resistance of some prostate cancer cells. ^
Resumo:
Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1-mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c-inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.
Resumo:
Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD369↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed.
Resumo:
We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.
Resumo:
Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.
Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.
Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.
Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.
Resumo:
PURPOSE: Some members of a novel series of pyrrolo-1,5-benzoxazepines (PBOXs) are microtubule-targeting agents capable of inducing apoptosis in a variety of human cancerous cells, hence, they are currently being developed as potential anti-cancer agents. The purpose of this study was to first characterise the activities of a novel PBOX analogue, PBOX-16 and then investigate the anti-angiogenic potential of both PBOX-16 and its prototype PBOX-6.
METHODS: The effects of PBOX-6 and -16 on cancerous cells (chronic myeloid leukaemia K562 cells and ovarian carcinoma A2780 cells) and primary cultured human umbilical vein endothelial cells (HUVECs) were examined by assessing cell proliferation, microtubular organisation, DNA analysis of cell cycle progression and caspase-3/7 activity. Their anti-angiogenic properties were then investigated by examining their ability to interfere with HUVEC differentiation into capillary-like structures and vascular endothelial growth factor (VEGF)-stimulated HUVEC migration.
RESULTS: PBOX-6 and -16 inhibited proliferation of K562, A2780 and HUVEC cells in a concentration-dependent manner. PBOX-16, confirmed as a novel depolymerising agent, was approximately tenfold more potent than PBOX-6. Inhibition of cell proliferation was mediated by G(2)/M arrest followed by varying degrees of apoptosis depending on the cell type; endothelial cells underwent less apoptosis than either of the cancer cell lines. In addition to the antitumourigenic properties, we also describe a novel antiangiogenic function for PBOXs: treatment with PBOXs inhibited the spontaneous differentiation of HUVECs into capillary-like structures when grown on a basement membrane matrix preparation (Matrigel™) and also significantly reduced VEGF-stimulated HUVEC migration.
CONCLUSION: Dual targeting of both the tumour cells and the host endothelial cells by PBOX compounds might enhance the anti-cancer efficacy of these drugs.
Resumo:
Parkinson's disease is characterized by the progressive and selective loss of dopaminergic neurons in the substantia nigra. It has been postulated that endogenously formed CysDA (5-S-cysteinyldopamine) and its metabolites may be, in part, responsible for this selective neuronal loss, although the mechanisms by which they contribute to such neurotoxicity are not understood. Exposure of neurons in culture to CysDA caused cell injury, apparent 12-48 h post-exposure. A portion of the neuronal death induced by CysDA was preceded by a rapid uptake and intracellular oxidation of CysDA, leading to an acute and transient activation of ERK2 (extracellular-signal-regulated kinase 2) and caspase 8. The oxidation of CysDA also induced the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser967, the phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun (Ser73) as well as the activation of p38, caspase 3, caspase 8, caspase 7 and caspase 9. Concurrently, the inhibition of complex I by the dihydrobenzothiazine DHBT-1 [7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid], formed from the intracellular oxidation of CysDA, induces complex I inhibition and the subsequent release of cytochrome c which further potentiates pro-apoptotic mechanisms. Our data suggest a novel comprehensive mechanism for CysDA that may hold relevance for the selective neuronal loss observed in Parkinson's disease.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: A falência hepática é uma consequência da inflamação sistêmica após pancreatite aguda. Avaliou-se o efeito da reposição volêmica com soluções salinas fisiológicas ou hipertônica na produção hepática de citocinas e na expressão de proteínas ativadas por choque térmico e proteínas ligadas à apoptose durante a pancreatite aguda. MÉTODOS: Ratos Wistar foram divididos em quatro grupos: C - animais controles não submetidos à lesão e nem ao tratamento; NT - animais submetidos à indução de pancreatite aguda e não tratados; SN - animais submetidos à indução de pancreatite aguda e tratados com solução salina normal (NaCl 0,9%); SH - animais submetidos à pancreatite aguda e tratados com solução salina hipertônica (NaCl 7,5%). A pancreatite aguda foi induzida por infusão retrógrada transduodenal de taurocolato de sódio 2,5% no ducto pancreático. Após 4, 12 e 24 horas da indução da pancreatite aguda, analisaram-se, no fígado, TNF-α, IL-1β, IL-6 e IL-10, caspase-2, caspase-7, APAF-1, AIF, HSP60 e HSP90. RESULTADOS: A caspase-2 diminuiu nos grupos SN e SH (p<0,05 versus C) após 12 horas. APAF-1, AIF e HSP90 permaneceram inalterados. Após 4 horas da indução, a capsase-7 aumentou no grupo NT (p<0,01 versus C), embora se mantendo em níveis basais nos grupos reperfundidos. A HSP60 aumentou em todos os grupos após 4 horas (p<0,001 versus C). No entanto, o grupo SH mostrou menor expressão de HSP60 que o grupo SN (p<0,05). A solução salina hipertônica manteve a produção de citocinas em níveis normais. A reperfusão com volume com solução salina normal ou hipertônica, modulou significativamente a expressão de caspase-7. CONCLUSÃO: A reposição volêmica com solução salina normal ou hipertônica foi efetiva em reduzir a caspase-7. Entretanto, somente a solução salina hipertônica foi capaz de regular a produção de citocinas e a expressão de HSP60 em todos os momentos analisados.
Resumo:
As glândulas salivares são estruturas essenciais para a manutenção da homeostase da cavidade oral pela síntese e secreção do fluido salivar. A disfunção ou perda permanente das glândulas salivares causadas por radioterapia, doenças inflamatórias ou desordens congênitas elevam principalmente o risco de infecções da mucosa oral e de estruturas dentárias, além de potencialmente prejudicar funções fisiológicas como fala, mastigação e paladar, diretamente interferindo na qualidade de vida dos indivíduos afetados. Os tratamentos atualmente disponíveis são apenas paliativos, ressaltando a necessidade de se compreender melhor os processos embriogênicos a fim de desenvolver novas estratégias terapêuticas capazes de regenerar as glândulas salivares. O princípio da formação das glândulas salivares baseia-se na coordenação de diversos processos morfogenéticos, e este trabalho foca particularmente em investigar a formação do espaço luminal do sistema de ductos, uma vez que a adequada abertura dos lumens é um processo essencial para a secreção salivar. Relata-se que a remoção das células centrais dos cordões sólidos epiteliais por morte celular apoptótica é o principal mecanismo de abertura do espaço luminal dos futuros ductos glandulares em camundongos. Porém, pouco se sabe sobre o controle temporal da apoptose durante o desenvolvimento glandular e sobre seu comportamento em glândulas salivares humanas. Neste trabalho, o perfil de expressão de diversas proteínas envolvidas na cascata apoptótica em glândulas salivares fetais humanas foi analisado de acordo com cada estágio morfogenético por imunoistoquímica (Bax, Bak, Bad, Bid, Bcl-2, Bcl-x, Bcl-xL, caspase-3 clivada, caspases-6, -7 e -9, apaf-1, survivina e citocromo c). As análises semi-qualitativas resultaram em negatividade apenas para as proteínas Bcl-2, Bad, Bid e caspase-3 clivada em todas as fases de desenvolvimento. A expressão nuclear de Bax e Bak foi identificada em presumidos espaços luminais em estágios precoces, enquanto Bcl-xL foi o fator antiapoptótico da família Bcl-2 que exibiu expressão nuclear mais importante. Caspases-6, -7 e -9 foram positivas em todas as fases, e a ausência de caspase-3 clivada sugere caspase-7 como principal caspase efetora da apoptose em desenvolvimento de glândulas salivares humanas. Ambos os componentes do complexo apoptossomo foram positivos durante o desenvolvimento glandular, e o inibidor survivina demonstrou mais positividade nuclear em estágios mais avançados. Ao observar a expressão de reguladores apoptóticos durante o desenvolvimento glandular humano, foram realizados experimentos funcionais com culturas de tecido glandular de camundongos para avaliar o papel das caspases durante a formação desta estrutura. Inicialmente detectou-se a atividade apoptótica em glândulas salivares de camundongos albinos no centro dos cordões epiteliais primários a partir de estágios precoces de desenvolvimento através de TUNEL e caspase-3 clivada. A partir disso, foi realizada a inibição apoptótica funcional in vitro durante o mesmo período, que resultou em ductos significativamente mais amplos e em defeitos morfológicos importantes nas estruturas luminal e acinar. Este trabalho evidenciou portanto atividade apoptótica durante a formação de glândulas salivares humanas e de camundongo, expressando-se em fases mais precoces do que reportadas anteriormente. Além disso, a ausência de Bad e Bid indica que a via intrínseca está mais ativa que a extrínseca, e distintos perfis de expressão da maioria das moléculas sugere adicionais funções não-apoptóticas durante a morfogênese glandular.
Resumo:
Electrophilic attack of hypochlorous acid on unsaturated bonds of fatty acyl chains is known to result mostly in chlorinated products that show cytotoxicity to some cell lines and were found in biological systems exposed to HOCl. This study aimed to investigate more deeply the products and the mechanism underlying cytotoxicity of phospholipid-HOCl oxidation products, synthesized by the reaction of HOCl with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonyl-phosphatidylcholine. Phospholipid chlorohydrins were found to be the most abundant among obtained products. HOCl-modified lipids were cytotoxic towards HUVEC-ST (endothelial cells), leading to a decrease of mitochondrial potential and an increase in the number of apoptotic cells. These effects were accompanied by an increase of the level of active caspase-3 and caspase-7, while the caspase-3/-7 inhibitor Ac-DEVD-CHO dramatically decreased the number of apoptotic cells. Phospholipid-HOCl oxidation products were shown to affect cell proliferation by a concentration-dependent cell cycle arrest in the G/G phase and activating redox sensitive p38 kinase. The redox imbalance observed in HUVEC-ST cells exposed to modified phosphatidylcholines was accompanied by an increase in ROS level, and a decrease in glutathione content and antioxidant capacity of cell extracts. © 2014 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To investigate the effect of Lycii fructus polysaccharides (LFPS) on ovulation failure. Methods: A rat model of ovulation failure was established by intragastric administration of hydroxyurea (300 mg/kg). Rats with ovulation failure then received LFPS via oral administration at doses of 100, 200, or 400 mg/kg. The body, uterus and ovary of each rat were weighed using electronic scales. The hypothalamic-pituitary-ovarian (HPO) axis hormones, including estradiol (E2) level, follicle-stimulating hormone (FSH) activity, and luteinizing hormone (LH) activity in the serum of each rat were determined by enzyme-linked immunosorbent assay (ELISA). The levels of pro-apoptotic proteins (Fas, FasL, FADD, c-caspase-8, c-caspase-10, c-caspase-3, c-caspase-6, and c-caspase-7) in the ovarian tissue of each rat were detected by western blot. Results: Hydroxyurea reduced significantly (p < 0.01) uterus and ovary indices (uterus or ovary weight/body weight) (0.119 and 0.026 %), E2 level (3.42 pmol/L), and FSH and LH activities (2.28 and 2.76 U/L), compared with those in the normal group (0.169 and 0.039 %; 6.72 pmol/L; 2.76 and 3.75 U/L). Hydroxyurea increased significantly (p < 0.01) the levels of the above-mentioned pro-apoptotic proteins relative to those in the normal group. LFPS (100, 200, or 400 mg/kg) reversed significantly (p < 0.05 or 0.01) the effect of hydroxyurea on all of the above indices. Conclusion: LFPS exhibits a protective effect on hydroxyurea-induced ovulation failure by regulating the HPO axis hormones and death receptor-mediated apoptotic pathway.
Resumo:
Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
A series of macrobicyclic dizinc(II) complexes Zn2L1-2B](ClO4)(4) (1-6) have been synthesized and characterized (L1-2 are polyaza macrobicyclic binucleating ligands, and B is the N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)). The DNA and protein binding, DNA hydrolysis and anticancer activity of these complexes were investigated. The interactions of complexes 1-6 with calf thymus DNA were studied by spectroscopic techniques, including absorption, fluorescence and CD spectroscopy. The DNA binding constant values of the complexes were found to range from 2.80 x 10(5) to 5.25 x 10(5) M-1, and the binding affinities are in the following order: 3 > 6 > 2 > 5 > 1 > 4. All the dizinc(II) complexes 1-6 are found to effectively promote the hydrolytic cleavage of plasmid pBR322 DNA under anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 3 and 6 under physiological conditions give observed rate constants (k(obs)) of 5.56 +/- 0.1 and 5.12 +/- 0.2 h(-1), respectively, showing a 10(7)-fold rate acceleration over the uncatalyzed reaction of dsDNA. Remarkably, the macrobicyclic dizinc(II) complexes 1-6 bind and cleave bovine serum albumin (BSA), and effectively promote the caspase-3 and caspase-9 dependent deaths of HeLa and BeWo cancer cells. The cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme levels in cancer cell lysate and content media.