934 resultados para CURVATURE TENSOR
Resumo:
We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M where R(g) and dv (g) denote the corresponding Riemannian curvature tensor and volume form and p a (0, a). First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for for certain values of p. Then we conclude that they are strict local minimizers for for those values of p. Finally generalizing this result we prove that product of space forms of same type and dimension are strict local minimizer for for certain values of p.
Resumo:
We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by R-n/2(g) := integral(M) vertical bar R(g)vertical bar(n//2) dv(g) where R(g), dv(g) denote the Riemannian curvature and volume form corresponding to g. We show that there are locally symmetric spaces which are unstable critical points for this functional.
Resumo:
The general structure of a metric-torsion theory of gravitation allows a parity-violating contribution to the complete action which is linear in the curvature tensor and vanishes identically in the absence of torsion. The resulting action involves, apart from the constant ¯K E =8pgr/c4, a coupling (B) which governs the strength of the parity interaction mediated by torsion. In this model the Brans-Dicke scalar field generates the torsion field, even though it has zero spin. The interesting consequence of the theory is that its results for the solar-system differ very little from those obtained from Brans-Dicke (BD) theory. Therefore the theory is indistinguishable from BD theory in solar-system experiments.
Resumo:
We study motion around a static Einstein and pure Lovelock black hole in higher dimensions. It is known that in higher dimensions bound orbits exist only for a pure Lovelock black hole in all even dimensions, D = 2N + 2, where N is the degree of Lovelock polynomial action. In particular, we compute periastron shift and light bending, and the latter is given by one of the transverse spatial components of the Riemann curvature tensor. We also consider the pseudo-Newtonian potentials and Kruskal coordinates.
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This thesis covers a range of topics in numerical and analytical relativity, centered around introducing tools and methodologies for the study of dynamical spacetimes. The scope of the studies is limited to classical (as opposed to quantum) vacuum spacetimes described by Einstein's general theory of relativity. The numerical works presented here are carried out within the Spectral Einstein Code (SpEC) infrastructure, while analytical calculations extensively utilize Wolfram's Mathematica program.
We begin by examining highly dynamical spacetimes such as binary black hole mergers, which can be investigated using numerical simulations. However, there are difficulties in interpreting the output of such simulations. One difficulty stems from the lack of a canonical coordinate system (henceforth referred to as gauge freedom) and tetrad, against which quantities such as Newman-Penrose Psi_4 (usually interpreted as the gravitational wave part of curvature) should be measured. We tackle this problem in Chapter 2 by introducing a set of geometrically motivated coordinates that are independent of the simulation gauge choice, as well as a quasi-Kinnersley tetrad, also invariant under gauge changes in addition to being optimally suited to the task of gravitational wave extraction.
Another difficulty arises from the need to condense the overwhelming amount of data generated by the numerical simulations. In order to extract physical information in a succinct and transparent manner, one may define a version of gravitational field lines and field strength using spatial projections of the Weyl curvature tensor. Introduction, investigation and utilization of these quantities will constitute the main content in Chapters 3 through 6.
For the last two chapters, we turn to the analytical study of a simpler dynamical spacetime, namely a perturbed Kerr black hole. We will introduce in Chapter 7 a new analytical approximation to the quasi-normal mode (QNM) frequencies, and relate various properties of these modes to wave packets traveling on unstable photon orbits around the black hole. In Chapter 8, we study a bifurcation in the QNM spectrum as the spin of the black hole a approaches extremality.
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.
Resumo:
Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.
Resumo:
In this letter we apply an alternative approach, recently developed, to the description of massless particles of arbitrary spin to the case of spin-two particles. This provides a non-geometrical approach to the theory of linearized gravitation. Within this method the chiral components of a spinor field are treated as independent field variables. The free field Lagrangian is built up from the requirement of chiral invariance. This formulation is parallel to the neutrino theory and leads to a formulation that generalizes, to particles of spin-two, the two-component neutrino theory. At the free field level the analog of curvature tensor, spin connection tensor, and metric tensor are independent quantities. By introducing left-right asymmetric linear interactions of these chiral components we get the linearized gravitation theory.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.
Resumo:
We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.