SOME UNSTABLE CRITICAL METRICS FOR THE L-n/2-NORM OF THE CURVATURE TENSOR


Autoria(s): Bhattacharya, Atreyee; Maity, Soma
Data(s)

2014

Resumo

We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by R-n/2(g) := integral(M) vertical bar R(g)vertical bar(n//2) dv(g) where R(g), dv(g) denote the Riemannian curvature and volume form corresponding to g. We show that there are locally symmetric spaces which are unstable critical points for this functional.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/50208/1/mat_res_let_12-2_2014.pdf

Bhattacharya, Atreyee and Maity, Soma (2014) SOME UNSTABLE CRITICAL METRICS FOR THE L-n/2-NORM OF THE CURVATURE TENSOR. In: MATHEMATICAL RESEARCH LETTERS, 21 (2). pp. 235-240.

Publicador

INT PRESS BOSTON, INC

Relação

http://arxiv.org/pdf/1211.5774v1

http://eprints.iisc.ernet.in/50208/

Palavras-Chave #Mathematics
Tipo

Journal Article

PeerReviewed