993 resultados para COMPOSITIONAL VARIATION
Resumo:
A detailed study of a nodule from the Somali Basin dated by 230Thexcess was correlated with the paleoceanographic events recorded in Site 236 (Leg 24) Deep Sea Drilling Project (DSDP) cores. Tentative indications are that the phase of nodule accretion starting with the development of pillar structure at a depth of 20 mm in the nodule around 13 Ma coincides with increased Antarctic Bottom Water (AABW) flow and an elevated calciumcarbonate compensation depth (CCD). The Late Miocene lowering of the CCD is represented by the mottled zones between 8 and 18 mm in the nodule is characterised by an abundant silicate component (>20%) of aeolian origin. The Miocene/Pliocene boundary (5 Ma) occurs at a depth of about 8 mm and is represented by the development of pillar structure and a minimum of aeolian dust (10.3%). The increased biological productivity of the Somali surface water since the Middle Miocene is demonstrated by the increasing Corg content of the nodule (from 0.11 to 0.19%) towards its surface.
Resumo:
Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bulk samples of S40Se60,Sb-x (with x=10, 20, 30 and 40 at. %) were prepared from high purity chemicals by melt quenching technique. The samples compositions were confirmed by using energy dispersive analysis of X-rays. X-ray diffraction studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with compositional has been investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The optical band gap of the thin films is found to be decreased with composition. Increasing Sb content was found to affect the structural and optical properties of bulk samples. The intensity of core level spectra changes with the addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly show the structural modifications due to Sb addition.
Resumo:
This paper describes the importance of (H2O)(6) clusters in controlling the properties of hexacyanoferrate (Prussian Blue) materials. A careful in situ study of compositional changes by using electrogravimetric techniques (in ac and dc modes) in hexacyanoferrates containing K+ alkali metals reveals the existence of a changeover in the properties of these films in a narrow potential range. Control of the compositional variation of the changeover is dependent on the K+ stoichiometric number in the compound structure. However, a specific K+ occupation in the compound structure activates the occupation of the (H2O)(6) cluster by H3O+ and/or H+, causing the changeover in the properties of hexacyanoferrate film. Thus, the information thus obtained is very useful for understanding the mechanisms involved in the electrochemical reversible switch between ferrimagnetism/paramagnetism, semiconductor/metal and electroluminescence/nonelectroluminescence properties of molecular cyanide materials.
Resumo:
We investigate the formation of compositional modulation and atomic ordering in InGaP films. Such bulk properties - as well as surface morphologies - present a strong dependence on growth parameters, mainly the V/III ratio. Our results indicate the importance of surface diffusion and, particularly, surface reconstruction for these processes. Most importantly from the application point of view, we show that the compositional modulation is not necessarily coupled to the surface instabilities, so that smooth InGaP films with periodic compositional variation could be obtained. This opens a new route for the generation of templates for quantum dot positioning and three-dimensional arrays of nanostructures. © 2007 American Institute of Physics.
Resumo:
A paradigm shift is taking place in orthopaedic and reconstructive surgery. This transition from using medical devices and tissue grafts towards the utilization of a tissue engineering approach combines biodegradable scaffolds with cells and/or biological molecules in order to repair and/or regenerate tissues. One of the potential benefits offered by solid freeform fabrication (SFF) technologies is the ability to create such biodegradable scaffolds with highly reproducible architecture and compositional variation across the entire scaffold due to their tightly controlled computer-driven fabrication. Many of these biologically activated materials can induce bone formation at ectopic and orthotopic sites, but they have not yet gained widespread use due to several continuing limitations, including poor mechanical properties, difficulties in intraoperative handling, lack of porosity suitable for cellular and vascular infiltration, and suboptimal degradation characteristics. In this chapter, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design and fabrication in combination with growth factors for bone engineering applications. Lastly, we comment on the current and future developments in the field, such as the functionalization of novel composite scaffolds with combinations of growth factors designed to promote cell attachment, cell survival, vascular ingrowth, and osteoinduction.
Resumo:
IR absorption spectra of As-Se glasses have been studied over a wide range of compositions. Various two-phonon, multiphonon (combination tones) and impurity absorptions have been identified. Compositional variation of relative band intensities has been explained in terms of the chemically ordered network model.
Resumo:
Väitöskirja koostuu neljästä esseestä, joissa tutkitaan empiirisen työntaloustieteen kysymyksiä. Ensimmäinen essee tarkastelee työttömyysturvan tason vaikutusta työllistymiseen Suomessa. Vuonna 2003 ansiosidonnaista työttömyysturvaa korotettiin työntekijöille, joilla on pitkä työhistoria. Korotus oli keskimäärin 15 % ja se koski ensimmäistä 150 työttömyyspäivää. Tutkimuksessa arvioidaan korotuksen vaikutus vertailemalla työllistymisen todennäköisyyksiä korotuksen saaneen ryhmän ja vertailuryhmän välillä ennen uudistusta ja sen jälkeen. Tuloksien perusteella työttömyysturvan korotus laski työllistymisen todennäköisyyttä merkittävästi, keskimäärin noin 16 %. Korotuksen vaikutus on suurin työttömyyden alussa ja se katoaa kun oikeus korotettuun ansiosidonnaiseen päättyy. Toinen essee tutkii työttömyyden pitkän aikavälin kustannuksia Suomessa keskittyen vuosien 1991 – 1993 syvään lamaan. Laman aikana toimipaikkojen sulkeminen lisääntyi paljon ja työttömyysaste nousi yli 13 prosenttiyksikköä. Tutkimuksessa verrataan laman aikana toimipaikan sulkemisen vuoksi työttömäksi jääneitä parhaassa työiässä olevia miehiä työllisinä pysyneisiin. Työttömyyden vaikutusta tarkastellaan kuuden vuoden seurantajaksolla. Vuonna 1999 työttömyyttä laman aikana kokeneen ryhmän vuosiansiot olivat keskimäärin 25 % alemmat kuin vertailuryhmässä. Tulojen menetys johtui sekä alhaisemmasta työllisyydestä että palkkatasosta. Kolmannessa esseessä tarkastellaan Suomen 1990-luvun alun laman aiheuttamaa työttömyysongelmaa tutkimalla työttömyyden kestoon vaikuttavia tekijöitä yksilötasolla. Kiinnostuksen kohteena on työttömyyden rakenteen ja työn kysynnän muutoksien vaikutus keskimääräiseen kestoon. Usein oletetaan, että laman seurauksena työttömäksi jää keskimääräistä huonommin työllistyviä henkilöitä, jolloin se itsessään pidentäisi keskimääräistä työttömyyden kestoa. Tuloksien perusteella makrotason kysyntävaikutus oli keskeinen työttömyyden keston kannalta ja rakenteen muutoksilla oli vain pieni kestoa lisäävä vaikutus laman aikana. Viimeisessä esseessä tutkitaan suhdannevaihtelun vaikutusta työpaikkaonnettomuuksien esiintymiseen. Tutkimuksessa käytetään ruotsalaista yksilötason sairaalahoitoaineistoa, joka on yhdistetty populaatiotietokantaan. Aineiston avulla voidaan tutkia vaihtoehtoisia selityksiä onnettomuuksien lisääntymiselle noususuhdanteessa, minkä on esitetty johtuvan esim. stressin tai kiireen vaikutuksesta. Tuloksien perusteella työpaikkaonnettomuudet ovat syklisiä, mutta vain tiettyjen ryhmien kohdalla. Työvoiman rakenteen vaihtelu saattaa selittää osan naisten onnettomuuksien syklisyydestä. Miesten kohdalla vain vähemmän vakavat onnettomuudet ovat syklisiä, mikä saattaa johtua strategisesta käyttäytymisestä.
Resumo:
The compositional dependence of thermal properties, such as glass transition temperature (T-g), non-reversing enthalpy change (Delta H-NR) and the specific heat capacity change (Delta C-p) of melt quenched Ge7Se93-xSbx (21 a parts per thousand currency sign x a parts per thousand currency sign 31) glasses, has been studied using alternating differential scanning calorimetry (ADSC) which is analogous to modulated differential scanning calorimetry (MDSC). The glass transition temperature, T-g, which is a measure of global connectivity of the glass, has been found to increase with the addition of Sb. In addition, a change in slope has been observed in the composition dependence of T-g at an average coordination aOE (c) r > = 2.40. The experimentally observed compositional variation of glass transition temperature, has been compared with the theoretical predictions from the stochastic agglomeration theory (SAT) and has been found to be consistent. Further, a narrow thermally reversing window is seen in the compositional variation of the relaxation enthalpy (Delta H-NR), which is centered around aOE (c) r > = 2.40. The change in specific heat capacity (Delta C-p) at T-g is also found to exhibit a distinct minima at aOE (c) r > = 2.40, suggesting that the structural rearrangements for the liquid in the glass transition region are minimized around aOE (c) r > = 2.4.
Resumo:
Thin films of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(x = 0.1 to 0.3) (PMN-PT) were successfully grown on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A thin template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. The crystallographic structure and compositional variation were confirmed with x-ray diffraction and energy diffraction x-ray (EDX) analysis. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor-type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (Tm) and also diffuse phase transition. This relaxor nature in PMN-PT thin films was attributed to freezing of the dipole moment, which takes place below a certain temperature. This phenomenon was found to be very similar to spin glass system, where spins are observed to freeze after certain temperature.
Resumo:
Bulk samples of S40Se60-xSbx (with x=10, 20, 30, 40 at. %) were prepared from high purity S, Se and Sb by melt quenching method. XRD studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with composition has been investigated by XPS and Raman spectroscopy. The intensity of XPS core level spectra changes with addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly shows the structural modifications due to Sb addition.
Resumo:
In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite (Ca-10(PO4)(6)(OH)(2)) on doping with silver. The transformation of hydroxyapatite to (beta/alpha) tricalcium phosphate phases during sintering has been explored using Raman spectroscopy and X-ray diffraction techniques. The optical absorption spectroscopy analysis reveals the presence of Ag+ ions at low doping levels. As the doping increases, abundance of Ag particles is enhanced.
Resumo:
The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.
The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.
Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.
Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.
Resumo:
We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.