992 resultados para Cálculo de medidas
Resumo:
En este capítulo,describimos nuestras actuaciones para el diseño e implementación de la unidad didáctica relacionada con el cálculo de áreas de polígonos por el método de descomposición y recomposición. Inicialmente, efectuamos la formulación del problema, al enfocarlo desde la normativa curricular colombiana, y describimos el proceso de selección del tema y los contextos social, institucional y académico del colegio donde se implementó. Después, explicamos el proceso del diseño basado en el análisis didáctico realizado sobre el tema. Seguidamente, describimos los instrumentos y procedimientos de recolección y análisis de la información. Posteriormente, describimos el diseño que se implementó, detallamos la evaluación realizada al diseño y a la implementación, y mostramos una propuesta de mejora para una futura aplicación. Por último, presentamos conclusiones de aspectos relevantes en el diseño e implementación de la unidad didáctica y listamos las referencias y anexos.
Resumo:
Las fórmulas que empleamos para calcular el área de una superficie geométrica se basan en las medidas de longitudes de esas figuras, con el peligro de que se considere la superficie como una magnitud derivada de la longitud. Pero además estas fórmulas para el calculo de áreas dependen de la forma geométrica que se ha elegida como unidad de superficie: el cuadrado. Aunque esta elección es adecuada desde un punto de vista practico, si queremos formar mentes que sean capaces de resolver problemas mas generales y comprender el concepto de superficie sin reducir su calculo a la mera aplicación de una fórmula, debemos indicar Opciones alternativas y una de ellas puede ser relativizar la elección de la unidad de medida. En este artículo hemos tomado como unidad de superficie un triangulo equilátero de lado unidad con el cual hemos revisado y mostrado la relatividad del proceso de cálculo de superficies áreas de figuras planos.
Resumo:
Neste trabalho é descrito um método automático para o cálculo das dimensões de caixas, em tempo real, a partir de uma única imagem obtida com projeção perspectiva. Conhecendo a orientação da caixa no espaço tridimensional e sua distância em relação à câmera, as coordenadas 3D de seus vértices podem ser estimadas e suas dimensões calculadas. Na técnica proposta, são utilizados conceitos de geometria projetiva para estimar a orientação espacial da caixa de interesse a partir de sua silhueta. Já a distância da caixa em relação à câmera é estimada por meio da projeção de feixes de laser sobre uma das faces visíveis da caixa. Esta abordagem pode ser aplicada quando duas ou três faces da caixa de interesse são visíveis simultaneamente na imagem, mesmo quando a caixa encontra-se parcialmente oclusa por outros objetos na cena. Entre as contribuições deste trabalho está o desenvolvimento de um eficiente processo de votação para a transformada de Hough, onde os pixels de uma imagem binária são processados em grupos ao invés de individualmente, como ocorre no método convencional. Também é apresentado um modelo estatístico para a remoção de fundo de cena. Nesse modelo, a cor de fundo é representada sob diferentes condições de iluminação por meio da delimitação de uma região no espaço de cores RGB. O modelo proposto não requer parametrização e é próprio para o uso em aplicações que requeiram câmeras móveis. Para a validação das técnicas descritas neste trabalho, foi construído um protótipo de scanner que calcula as dimensões de caixas a partir de imagens em tempo real. Com o auxilio do scanner, foram capturadas imagens e calculadas as dimensões de diversas caixas reais e sintéticas. As caixas sintéticas foram utilizadas em um ambiente controlado para a validação das técnicas propostas Um dos aspectos importantes deste trabalho é a análise da confiabilidade das medidas obtidas por meio da técnica proposta. Com o objetivo de estudar a propagação de erros ao longo do processo de cálculo das medidas, foi aplicado um método analítico baseado na Teoria de Erros. Também são apresentados estudos estatísticos envolvendo medições realizadas com o protótipo. Estes estudos levam em conta a diferença entre as medidas calculadas pelo sistema e as medidas reais das caixas. A análise dos resultados permite concluir que o método proposto é acurado e preciso.
Resumo:
En esta comunicación presentamos el sistema tutorial inteligente, al que hemos llamado AGENTGEOM, y analizamos cómo interactúa con un alumno en la resolución de un problema que compara áreas de superficies planas. En esta interacción, el alumno llega a apropiarse de habilidades estratégicas y argumentativas en la resolución de problemas. Observaremos que estas apropiaciones son consecuencia de las formas de comunicación alumno-AGENTGEOM, en las que se combinan construcciones gráficas y sentencias escritas que siguen las normas del lenguaje matemático, y la emisión de mensajes escritos en lenguaje natural.
Resumo:
Este taller estará dirigido a docentes de la educación básica y media y personas en general que estén interesados en conocer estrategias para la enseñanza del teorema de Pitágoras, en este se mostrarán algunos rompecabezas y se estudiaran, además se mostraran a través de una metodología llamada Aula Taller y finalmente se harán reflexiones alrededor de la enseñanza de la geometría en la escuela.
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
En la primera parte del artículo el autor muestra que las fórmulas de volumen del prisma, pirámide y esfera no se justifican adecuadamente a los estudiantes. Esta afirmación la sustenta a partir de un análisis sucinto de lo que aparece en los textos que tradicionalmente dominan la enseñanza y de su experiencia como docente. En la segunda parte da a conocer una propuesta para construir las fórmulas del volumen de un prisma y una pirámide cualquiera; del área del círculo y la semiesfera y con base en esta última, obtener la del volumen de la esfera. Termina con la descripción de las ventajas de la estrategia.
Resumo:
En el siguiente informe,presentamos el trabajo que desarrollamos como estudiantes del programa de Maestría en Educación Matemática de la Universidad de los Andes en el periodo 2012-2014. Presentamos la plani cación e implementación de una unidad didáctica en cuatro fases: el diseño previo, la implementación, la evaluación y la propuesta nal. El tema matemático que abordamos en la unidad didáctica es el de áreas de regiones sombreadas entre polígonos y porciones circulares. Este tema está ubicado dentro de la geometría métrica plana. Con la elaboración de la unidad didáctica,pretendemos contribuir a mitigar los inconvenientes que los estudiantes pueden presentar en el aprendizaje del tema y que los docentes pueden tener al orientarlo.
Resumo:
En los problemas clásicos, la proporcionalidad aparece como una relación exacta en el sentido que compara magnitudes bien determinadas y con medidas que se suponen conocidas exactamente. Es la manera como opera la llamada "regla de tres" de la escuela elemental. Así, en el movimiento uniforme, el espacio recorrido durante el tiempo fijo, es proporcional a la velocidad y para una velocidad determinada, es proporcional al tiempo. También e precio de una determinada mercadería es proporcional a la medida de la misma (longitud, si se trata de telas o alambres; peso, si se trata de azúcar patatas; volumen, si de líquidos como el vino o aceite). En las clases de nivel medio conviene poner abundantes ejemplos de magnitudes proporcionales, como las que acabamos de mencionar y otros de los que no lo son. En general, es conveniente hacer la representación gráfica de una magnitud en función de la otra, para ver si es o no una recta.
Resumo:
Los reyes vivían en el Alcázar, pero Felipe IV quería tener una segunda vivienda, más cómoda y menos húmeda en la que pasar ciertas temporadas de esparcimiento y recreo. Así surgió la idea de hacerse construir un nuevo palacio, a las afueras de Madrid, hacia levante, en la zona llamada El Prado, cerca de las Huertas que, desde el centro de la ciudad, en ligera pendiente, descendían hacia el río Manzanares.
Resumo:
En el siguiente artículo se presentan unas sencillas herramientas para analizar la distribución de los alumnos en una clase. Ésta puede ser objeto de análisis desde diferentes perspectivas. Se proponen medidas para: el estudio de la cercanía del alumno al profesor, el análisis de la concentración del grupo de alumnos y el estudio cuantitativo de la diferenciación espacial de los sexos en el aula. Las herramientas utilizadas pueden ser de interés tanto para una investigación de estas características espaciales por parte del profesor como, dada su simplicidad, recurso para el aprendizaje de herramientas estadísticas en clase.
Resumo:
Este trabajo pretende plasmar el estudio de las cónicas como formas geométricas que se pueden generar de múltiples formas y que verifican propiedades que son utilizadas en la vida cotidiana. Debido al nivel en el que se imparte este tema, 4º de ESO, nos hemos centrado en la distinción a partir de la generación y características de cada cónica. Para llevar a cabo esta tarea se han utilizado elementos manipulables, algunos de los cuales pueden ser generados por los propios alumnos, para asentar mejor en ellos las distintas definiciones y propiedades.
Resumo:
Cuantas escalas matemáticas coexisten en una vivienda normal? A esta pregunta la mayoría de ciudadanos responderían con una rotunda respuesta (¡Ninguna!) seguida de una leve sonrisa (En mi casa no entran las matemáticas). El objetivo de este clip es hacer ver la agobiante cantidad de escalas con las cuales todos (incluidos los de letras) convivimos. La exposición tendrá pues forma de carta dirigida al vecino de turno.
Resumo:
En los actuales manuales de estadística se suele plantear el método de mínimos cuadrados como una importante y singular técnica relacionado con el problema del ajuste, consiste no tener la ecuación de una curva que como algo determinado criterio, se acerca acuérdate de lo mejor posible los puntos observados de una distribución bidimensional.
Resumo:
En este artículo se presentan algunas experiencias sobre la aproximación intuitiva en geometría y sus implicaciones en el cálculo aproximado del número pi en la ESO. El proceso se gradúa en torno a cuatro actividades. En las dos primeras se aproxima experimentalmente el número Pi y se pretende descubrir el grado de móviles de los alumnos para enfrentarse, desde el punto de vista intuitivo, a los procesos geométricos de aproximación. En las dos últimas se hace una estimación de Pi, en un caso encontrando una secuencia de números irracionales convergente a ese número, y el otro, a partir de una simplificación del método utilizado por Arquímedes, que permite además dar una demostración diferente de la habitual.