49 resultados para Braid.
Resumo:
The three-dimensional molecular models of DNA triple helices and triple-stranded brain-like structure were built up by molecular architecture, and their structural features and energy decomposition were examined. The results showed: (i) The base triplet is the element forming braid-like and triple helix DNA; (ii) Under specified conditions, DNA could form the triplet-stranded braid-like structure; (iii) DNA stability of the braid-like structure is less than that of the triple helix structure. (C) 1995 Academic Press Limited.
Resumo:
Based on the experimental data of scanning tunneling microscopy (STM), models of three-stranded braid-like DNAs composed by three kinds of base triplets AAA, TAT and GCA were constructed. We investigated the braid-like DNAs and their comparative tripler DNAs using a molecular mechanics method. The three strands of braid-like DNAs are proven equivalent, while those of tripler DNAs are not. The conformational energies for braid-like DNAs were found to be higher than that for tripler DNAs. Each period in one strand of braid-like DNA has 18 nucleotides, half of which are right-handed, while the other half are left-handed. Additional discussions concerning sugar puckering modes and the H-bonds are also included. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).
Resumo:
In this paper, we determine the lower central and derived series for the braid groups of the projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is interesting in its own right. The n-string braid groups B(n)(RP(2)) of the projective plane RP(2) were originally studied by Van Buskirk during the 1960s. and are of particular interest due to the fact that they have torsion. The group B(1)(RP(2)) (resp. B(2)(RP(2))) is isomorphic to the cyclic group Z(2) of order 2 (resp. the generalised quaternion group of order 16) and hence their lower central and derived series are known. If n > 2, we first prove that the lower central series of B(n)(RP(2)) is constant from the commutator subgroup onwards. We observe that Gamma(2)(B(3)(RP(2))) is isomorphic to (F(3) X Q(8)) X Z(3), where F(k) denotes the free group of rank k, and Q(8) denotes the quaternion group of order 8, and that Gamma(2)(B(4)(RP(2))) is an extension of an index 2 subgroup K of P(4)(RP(2)) by Z(2) circle plus Z(2). As for the derived series of B(n)(RP(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group B(n)(RP(2)) being finite and soluble for n <= 2, the critical cases are n = 3, 4. We are able to determine completely the derived series of B(3)(RP(2)). The subgroups (B(3)(RP(2)))((1)), (B(3)(RP(2)))((2)) and (B(3)(RP(2)))((3)) are isomorphic respectively to (F(3) x Q(8)) x Z(3), F(3) X Q(8) and F(9) X Z(2), and we compute the derived series quotients of these groups. From (B(3)(RP(2)))((4)) onwards, the derived series of B(3)(RP(2)), as well as its successive derived series quotients, coincide with those of F(9). We analyse the derived series of B(4)(RP(2)) and its quotients up to (B(4)(RP(2)))((4)), and we show that (B(4)(RP(2)))((4)) is a semi-direct product of F(129) by F(17). Finally, we give a presentation of Gamma(2)(B(n)(RP(2))). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.
Resumo:
Let M be a compact, connected non-orientable surface without boundary and of genus g >= 3. We investigate the pure braid groups P,(M) of M, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 -> P(m)(M \ {x(1), ..., x(n)}) hooked right arrow P(n+m)(M) (P*) under right arrow P(n)(M) -> 1, where m, n >= 1, and p* is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration p: F(n+m)(M) -> F(n)(M) of configuration spaces, defined by p((x(1), ..., x(n), x(n+1), ..., x(n+m))) = (x(1), ..., x(n)). We show that p and p* admit a section if and only if n = 1. Together with previous results, this completes the resolution of the splitting problem for surface pure braid groups. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We classify the ( finite and infinite) virtually cyclic subgroups of the pure braid groups P(n)(RP(2)) of the projective plane. The maximal finite subgroups of P(n)(RP(2)) are isomorphic to the quaternion group of order 8 if n = 3, and to Z(4) if n >= 4. Further, for all n >= 3, the following groups are, up to isomorphism, the infinite virtually cyclic subgroups of P(n)(RP(2)): Z, Z(2) x Z and the amalgamated product Z(4)*(Z2)Z(4).
Resumo:
Based on recent work by Futer, Kalfagianni and Purcell, we prove that the volume of sufficiently complicated positive braid links is proportional to the signature defect Δσ = 2g−σ.
Resumo:
Mode of access: Internet.
Resumo:
We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
This thesis discusses subgroups of mapping class groups of particular surfaces. First, we study the Torelli group, that is, the subgroup of the mapping class group that acts trivially on the first homology. We investigate generators of the Torelli group, and we give an algorithm that factorizes elements of the Torelli group into products of particular generators. Furthermore, we investigate normal closures of powers of standard generators of the mapping class group of a punctured sphere. By using the Jones representation, we prove that in most cases these normal closures have infinite index in the mapping class group. We prove a similar result for the hyperelliptic mapping class group, that is, the group that consists of mapping classes that commute with a fixed hyperelliptic involution. As a corollary, we recover an older theorem of Coxeter (with 2 exceptional cases), which states that the normal closure of the m-th power of standard generators of the braid group has infinite index in the braid group. Finally, we study finite index subgroups of braid groups, namely, congruence subgroups of braid groups. We discuss presentations of these groups and we provide a topological interpretation of their generating sets.