989 resultados para Bounty Trough, Southwest Pacific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the potential of organic-walled dinoflagellate cysts (dinocysts) as tools for quantifying past sea-surface temperatures (SST) in the Southern Ocean. For this purpose, a dinocyst reference dataset has been formed, based on 138 surface sediment samples from different circum-Antarctic environments. The dinocyst assemblages of these samples are composed of phototrophic (gonyaulacoid) and heterotrophic (protoperidinioid) species that provide a broad spectrum of palaeoenvironmental information. The relationship between the environmental parameters in the upper water column and the dinocyst distribution patterns of individual species has been established using the statistical method of Canonical Correspondence Analysis (CCA). Among the variables tested, summer SST appeared to correspond to the maximum variance represented in the dataset. To establish quantitative summer SST reconstructions, a Modern Analogue Technique (MAT) has been performed on data from three Late Quaternary dinocyst records recovered from locations adjacent to prominent oceanic fronts in the Atlantic sector of the Southern Ocean. These dinocyst time series exhibit periodic changes in the dinocyst assemblage during the last two glacial/interglacial-cycles. During glacial conditions the relative abundance of protoperidinioid cysts was highest, whereas interglacial conditions are characterised by generally lower cyst concentrations and increased relative abundance of gonyaulacoid cysts. The MAT palaeotemperature estimates show trends in summer SST changes following the global oxygen isotope signal and a strong correlation with past temperatures of the last 140,000 years based on other proxies. However, by comparing the dinocyst results to quantitative estimates of summer SSTs based on diatoms, radiolarians and foraminifer-derived stable isotope records it can be shown that in several core intervals the dinocyst-based summer SSTs appeared to be extremely high. In these intervals the dinocyst record seems to be highly influenced by selective degradation, leading to unusual temperature ranges and to unrealistic palaeotemperatures. We used the selective degradation index (kt-index) to determine those intervals that have been biased by selective degradation in order to correct the palaeotemperature estimates. We show that after correction the dinocyst based SSTs correspond reasonably well with other palaeotemperature estimates for this region, supporting the great potential of dinoflagellate cysts as a basis for quantitative palaeoenvironmental studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Site 1119 is located at water depth 395 m near the subtropical front (STF; here represented by the Southland Front), just downslope from the shelf edge of eastern South Island, New Zealand. The upper 86.19 metres composite depth (mcd) of Site 1119 sediment was deposited at an average sedimentation rate of 34 cm/kyr during Marine Isotope Stages (MIS) 1-8 (0-252 ka), and is underlain across a ~25 kyr intra-MIS 8 unconformity by MIS 8.5-11 (277-367 ka) and older sediment deposited at ~14 cm/kyr. A time scale is assigned to Site 1119 using radiocarbon dates for the period back to ~39 ka, and, prior to then, by matching its climatic record with that of the Vostok ice core, which it closely resembles. Four palaeoceanographic proxy measures for surface water masses vary together with the sandy-muddy, glacial-interglacial (G/I) cyclicity at the site. Interglacial intervals are characterised by heavy delta13C, high colour reflectance (a proxy for carbonate content), low Q-ray (a proxy for clay content) and light delta18O; conversely, glacial intervals exhibit light delta13C, low reflectance, high Q-ray and heavy delta18O signatures. Early interglacial intervals are represented by silty clays with 10-105-cm-thick beds of sharp-based (Chondrites-burrowed), shelly, graded, fine sand. The sands are rich in foraminifera, and were deposited distant from the shoreline under the influence of longitudinal flow in relatively deep water. Glacial intervals comprise mostly micaceous silty clay, though with some thin (2-10 cm thick) sands present also at peak cold periods, and contain the cold-water scallop Zygochlamys delicatula. Interglacial sandy intervals are characterised by relatively low sedimentation rates of 5-32 cm/kyr; cold climate intervals MIS 10, 6 and 2 have successively higher sedimentation rates of 45, 69 and 140 cm/kyr. Counter-intuitively,and forced by the bathymetric control of a laterally-moving shoreline during G/I and I/G transitions, the 1119 core records a southeasterly (seaward) movement of the STF during early glacial periods, accompanied by the incursion of subtropical water (STW) above the site, and northwesterly (landward) movement during late glacial and interglacial times, resulting in a dominant influence then of subantarctic surface water (SAW). The history of passage of these different water masses at the site is clearly delineated by their characteristic delta13C values. The intervals of thin, graded sands-muds which occur within MIS 2-3, 6, 7.4 and 10 indicate the onset at times of peak cold of intermittent bottom currents caused by strengthened and expanded frontal flows along the STF, which at such times lay near Site 1119 in close proximity to seaward-encroaching subantarctic waters within the Bounty gyre. In common with other nearby Southern Hemisphere records, the cold period which represents the last glacial maximum lasted between ~23-18 ka at Site 1119, during which time the STF and Subantarctic Front (SAF) probably merged into a single intense frontal zone around the head of the adjacent Bounty Trough.