928 resultados para Boolean Networks Complexity Measures Automatic Design Robot Dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'applicazione di misure, derivanti dalla teoria dell'informazione, fornisce un valido strumento per quantificare alcune delle proprietà dei sistemi complessi. Le stesse misure possono essere utilizzate in robotica per favorire l'analisi e la sintesi di sistemi di controllo per robot. In questa tesi si è analizzata la correlazione tra alcune misure di complessità e la capacità dei robot di portare a termine, con successo, tre differenti task. I risultati ottenuti suggeriscono che tali misure di complessità rappresentano uno strumento promettente anche nel campo della robotica, ma che il loro utilizzo può diventare difficoltoso quando applicate a task compositi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real living cell is a complex system governed by many process which are not yet fully understood: the process of cell differentiation is one of these. In this thesis work we make use of a cell differentiation model to develop gene regulatory networks (Boolean networks) with desired differentiation dynamics. To accomplish this task we have introduced techniques of automatic design and we have performed experiments using various differentiation trees. The results obtained have shown that the developed algorithms, except the Random algorithm, are able to generate Boolean networks with interesting differentiation dynamics. Moreover, we have presented some possible future applications and developments of the cell differentiation model in robotics and in medical research. Understanding the mechanisms involved in biological cells can gives us the possibility to explain some not yet understood dangerous disease, i.e the cancer. Le cellula è un sistema complesso governato da molti processi ancora non pienamente compresi: il differenziamento cellulare è uno di questi. In questa tesi utilizziamo un modello di differenziamento cellulare per sviluppare reti di regolazione genica (reti Booleane) con dinamiche di differenziamento desiderate. Per svolgere questo compito abbiamo introdotto tecniche di progettazione automatica e abbiamo eseguito esperimenti utilizzando vari alberi di differenziamento. I risultati ottenuti hanno mostrato che gli algoritmi sviluppati, eccetto l'algoritmo Random, sono in grado di poter generare reti Booleane con dinamiche di differenziamento interessanti. Inoltre, abbiamo presentato alcune possibili applicazioni e sviluppi futuri del modello di differenziamento in robotica e nella ricerca medica. Capire i meccanismi alla base del funzionamento cellulare può fornirci la possibilità di spiegare patologie ancora oggi non comprese, come il cancro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Networks and Complexity in Social Systems course commences with an overview of the nascent field of complex networks, dividing it into three related but distinct strands: Statistical description of large scale networks, viewed as static objects; the dynamic evolution of networks, where now the structure of the network is understood in terms of a growth process; and dynamical processes that take place on fixed networks; that is, "networked dynamical systems". (A fourth area of potential research ties all the previous three strands together under the rubric of co-evolution of networks and dynamics, but very little research has been done in this vein and so it is omitted.) The remainder of the course treats each of the three strands in greater detail, introducing technical knowledge as required, summarizing the research papers that have introduced the principal ideas, and pointing out directions for future development. With regard to networked dynamical systems, the course treats in detail the more specific topic of information propagation in networks, in part because this topic is of great relevance to social science, and in part because it has received the most attention in the literature to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generating functional method is employed to investigate the synchronous dynamics of Boolean networks, providing an exact result for the system dynamics via a set of macroscopic order parameters. The topology of the networks studied and its constituent Boolean functions represent the system's quenched disorder and are sampled from a given distribution. The framework accommodates a variety of topologies and Boolean function distributions and can be used to study both the noisy and noiseless regimes; it enables one to calculate correlation functions at different times that are inaccessible via commonly used approximations. It is also used to determine conditions for the annealed approximation to be valid, explore phases of the system under different levels of noise and obtain results for models with strong memory effects, where existing approximations break down. Links between Boolean networks and general Boolean formulas are identified and results common to both system types are highlighted. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the generating functional method. A general formulation, suitable for BN with any distribution of Boolean functions, is developed. It provides exact solutions and insight into the evolution of order parameters and properties of the stationary states, which are inaccessible via existing methodology. We identify cases where the commonly used annealed approximation is valid and others where it breaks down. Broader links between BN and general Boolean formulas are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from two studies on longitudinal friendship networks are presented, exploring the impact of a gratitude intervention on positive and negative affect dynamics in a social network. The gratitude intervention had been previously shown to increase positive affect and decrease negative affect in an individual but dynamic group effects have not been considered. In the first study the intervention was administered to the whole network. In the second study two social networks are considered and in each only a subset of individuals, initially low/high in negative affect respectively received the intervention as `agents of change'. Data was analyzed using stochastic actor based modelling techniques to identify resulting network changes, impact on positive and negative affect and potential contagion of mood within the group. The first study found a group level increase in positive and a decrease in negative affect. Homophily was detected with regard to positive and negative affect but no evidence of contagion was found. The network itself became more volatile along with a fall in rate of change of negative affect. Centrality measures indicated that the best broadcasters were the individuals with the least negative affect levels at the beginning of the study. In the second study, the positive and negative affect levels for the whole group depended on the initial levels of negative affect of the intervention recipients. There was evidence of positive affect contagion in the group where intervention recipients had low initial level of negative affect and contagion in negative affect for the group where recipients had initially high level of negative affect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz–Mancini–Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it "generates" several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of "generates." Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.