980 resultados para Blue laser recording


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SbOx thin films are deposited by reactive dc-magnetron sputtering from all antimony metal target in Ar+O-2 with the relative O-2 content 7%. It is found that the as-deposited films call represent a two-component system comprising amorphous Sb and amorphous Sb2O3. The crystallization of Sb is responsible for the changes of optical properties of the films. The results of the static, test show that the SbOx thin films have good writing sensitivity for blue laser beams and the recording marks are very clear and circular. High reflectivity contrast of about 41% is obtained at a writing power 6 mW and writing pulse width 300 ns. In addition, the films show a good stability after reading 10000 times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si:SbOx films have been deposited by reactive dc-magnetron sputtering from a Sb target with Si chips attached in Ar + O-2 with the relative O-2 content 7%. The as-deposited films contained Sb metal, Sb2O3, SiO, Si2O3 and SiO2. The crystallization of Sb was responsible for the changes of optical properties of the films. The results of the blue laser recording test showed that the films had good writing sensitivity for blue laser beam (406.7 nm), and the recording marks were still clear even if the films were deposited in air 60 days, which demonstrated that doping silicon in SbOx films can improve the stability of SbOx films. High reflectivity contrast of about 36% was obtained at a writing power 6 mW and writing pulse width 300 ns. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe:BiOx films are fabricated on K9 glass substrates by rf-magnetron sputtering of a BiFeO target under argon atmosphere with increasing sputtering power from 80 to 200 W at room temperature. It is found that the thin films grown at the sputtering power of 160W can be formed at an appropriate deposition rate and have an improved surface morphology. The XPS result reveals that the films investigated are comprised of Bi, Fe and O elements. A typical XRD pattern shows that no phase transition occurs in the films up to 400 degrees C. The results of the blue laser recording test demonstrate that the Fe:BiOx films have good writing sensitivity for blue laser beam (406.7 nm) and good stability after reading 10000 times. The recording marks of 200nm or less are obtained. These results indicate that the introduction of Fe into BiOx films can reduce the mark size and improve the stability of the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用直流磁控溅射法在不同氧氩分压比条件下制备了BiOx薄膜。通过对薄膜在蓝光作用前后的反射率对比度变化的研究发现,氧氩分压比为50%时制备的薄膜具有最佳的光学对比度。利用X射线衍射仪(XRD)、X光电子能谱(XPS)和光谱仪研究了薄膜热处理前后的结构和光谱性质的变化。研究结果表明薄膜光学性质变化主要由薄膜中氧化铋的相变引起。蓝光静态测试结果显示氧氩分压比为50%条件下制备的BiOx薄膜具有很好好的记录敏感度,在11mW的记录功率和800ns的记录脉宽条件下,得到了52%的反射率对比度。此外,BiOx薄膜表现出了非常好的读出稳定性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact continuous-wave blue laser has been demonstrated by direct frequency doubling of a laser diode with a periodically poled lithium niobate (PPLN) waveguide crystal. The optimum PPLN temperature is near 28 degreesC, and the dependence of waveguide crystals on crystal temperature is less sensitive than that of bulk crystals. A total of 14.8 mW of 488-nm laser power has been achieved. (C) 2005 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three wavelengths of red, green and blue of recording beams are systemically tested for the UV-assistant recording and optical fixing of holograms in a strongly oxidized Ce:Cu:LiNbO3 crystal. Three different photorefractive phenomena are observed. It is shown that the green beams will optimally generate a critical strong nonvolatile hologram with quick sensitivity and the optimal switching technique could be jointly used to obtain a nearly 100% high diffraction. Theoretical verification is given, and a prescription on the doping densities and on the oxidation/reduction states of the material to match a defined recording wavelength for high diffraction is suggested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We fabricated a phosphor-conversion white light using an InGaN laser diode that emits 445 nm and phosphor that emits in the yellow region when excited by the blue laser light. At 500 mA injection current the luminous flux and the luminous efficacy were 113 lm and 44 lm/W, respectively. The relationship of the luminous flux and the luminous efficacy of the white light with an injection current were discussed. Based on the evaluation method for luminous efficacy of light sources established by the Commission International de I'Eclairage (CIE) and the phosphor used in this experiment, a theoretical analysis of the experiment results and the maximum luminous efficacy of this white light fabrication method were also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser’s stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a monochromatic diffractive diffuser may not optimal for color speckle contrast reduction. A simulation of the Hadamard diffusers is conducted to determine the optimum spacing between the two diffusers for polychromatic speckle reduction. Experimental measured results are presented using the optimal spacing of Hadamard diffusers for RGB color speckle reduction, showing 60% reduction in contrast.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1-3 mu m length) were grown only in 1-5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the < 0001 > crystallographic direction. The coated nanorods were found to be highly dense having a thickness of similar to 1-3 mu m over the entire area 20 mm x 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the controlled variation of luminescence of ZnO nanostructures from intense ultraviolet to bright visible light. Deliberate addition of surfactants in the reaction medium not only leads to growth anisotropy of ZnO, but also alters the luminescence property. ZnO nanoclusters comprising of very fine particles with crystallite sizes approximate to 15-22nm were prepared in a non-aqueous medium, either from a single alcohol or from their mixtures. Introduction of the aqueous solution of the surfactant helps in altering the microstructure of ZnO nanostructure to nanorods, nanodumb-bells as well as the luminescence property. The as-prepared powder material is found to be well crystallized. Defects introduced by the surfactant in aqueous medium play an important role in substantial transition in the optical luminescence. Chromaticity coordinates were found to lie in the yellow region of color space. This gives an impression of white light emission from ZnO nanocrystals, when excited by a blue laser. Oxygen vacancy is described as the major defect responsible for visible light emission as quantified by X-ray photoelectron spectroscopy and Raman analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO powders/thin films/coatings when excited by a suitable excitation source, usually yield green luminescence in the visible wavelength range along with characteristic ultra-violet emission. We report yellow-red emission from ZnO nanoparticles synthesized within 5 min of microwave irradiation by using zinc acetylacetonate phenanthroline as the starting precursor material. The emission is strongly dependent on the typical structure of the starting precursor for ZnO synthesis, where one phenanthroline moiety is attached with zinc acetylacetonate hydrate complex. These ZnO nanoparticles could be potentially suitable phosphor for white light generation when excited by a blue laser. In contrast, the ZnO nanoparticles obtained from zinc acetylacetonate by similar method yield weak green emission. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

利用波导型准相位匹配周期极化反转铌酸锂(PPLN)晶体直接倍频波长为976nm的连续半导体激光二极管,在最佳晶体工作温度(28℃)下,获得了波长为488nm的连续蓝光输出,最大输出功率大于20mW。所用的晶体尺寸为8mm×1.4mm×1mm,波导截面为4.5μm×3.5μm,极化周期为5.2μm。研究了波导型周期极化反转铌酸锂晶体的倍频效率与温度的关系,与普通的周期极化反转铌酸锂相比,倍频效率与温度关系的敏感度较低。同时,由于晶体可以在室温下工作,简化了加温与温控部件,提高了整机的工作效率。在此实验的基础

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wurtzite single crystal GaN films have been grown onto a gamma-Al2O3/Si(001) substrate in a horizontal-type low pressure MOVPE system. A thin gamma-Al2O3 layer is an intermediate layer for the growth of single crystal GaN on Si although it is only an oriented polycrystal film as shown by reflection high electron diffraction. Moreover, the oxide is not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN layer as studied by transmission electron microscopy. Double crystal x-ray linewidth of (0002) peak of the 1.3 mu m sample is 54 arcmin and the films have heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature is observed by photoluminescence spectroscopy. Raman scattering does not detect any cubic phase coexistence.