962 resultados para Blowup of semi-linear equations
Resumo:
The goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd.
Resumo:
This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model
Resumo:
2010 Mathematics Subject Classification: 35R60, 60H15, 74H35.
Resumo:
This Note aims at presenting a simple and efficient procedure to derive the structure of high-order corrector estimates for the homogenization limit applied to a semi-linear elliptic equation posed in perforated domains. Our working technique relies on monotone iterations combined with formal two-scale homogenization asymptotics. It can be adapted to handle more complex scenarios including for instance nonlinearities posed at the boundary of perforations and the vectorial case, when the model equations are coupled only through the nonlinear production terms.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
This paper presents several new families of cumulant-based linear equations with respect to the inverse filter coefficients for deconvolution (equalisation) and identification of nonminimum phase systems. Based on noncausal autoregressive (AR) modeling of the output signals and three theorems, these equations are derived for the cases of 2nd-, 3rd and 4th-order cumulants, respectively, and can be expressed as identical or similar forms. The algorithms constructed from these equations are simpler in form, but can offer more accurate results than the existing methods. Since the inverse filter coefficients are simply the solution of a set of linear equations, their uniqueness can normally be guaranteed. Simulations are presented for the cases of skewed series, unskewed continuous series and unskewed discrete series. The results of these simulations confirm the feasibility and efficiency of the algorithms.
Resumo:
This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem.
Resumo:
"(This is being submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics, June 1959.)"
Regular singular points of a system of homogeneous linear differential equations of the first order.
Resumo:
"From Proceedings of the American Academy of Arts and Sciences, v.38, no. 9, Oct. 1902."
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In this paper we propose a refinement of some successive overrelaxation methods based on the reverse Gauss–Seidel method for solving a system of linear equations Ax = b by the decomposition A = Tm − Em − Fm, where Tm is a banded matrix of bandwidth 2m + 1. We study the convergence of the methods and give software implementation of algorithms in Mathematica package with numerical examples. ACM Computing Classification System (1998): G.1.3.
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.