Robust Solutions of MultiObjective Linear Semi-Infinite Programs under Constraint Data Uncertainty
Contribuinte(s) |
Universidad de Alicante. Departamento de Estadística e Investigación Operativa Laboratorio de Optimización (LOPT) |
---|---|
Data(s) |
01/10/2014
01/10/2014
19/08/2014
|
Resumo |
The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem. This research was partially supported by the Australian Research Council, Discovery Project DP120100467, the MICINN of Spain, grant MTM2011-29064-C03-02, and Generalitat Valenciana, grant ACOMP/2013/062. |
Identificador |
SIAM Journal on Optimization. 2014, 24(3): 1402-1419. doi:10.1137/130939596 1052-6234 (Print) 1095-7189 (Online) http://hdl.handle.net/10045/40806 10.1137/130939596 |
Idioma(s) |
eng |
Publicador |
Society for Industrial and Applied Mathematics (SIAM) |
Relação |
http://dx.doi.org/10.1137/130939596 |
Direitos |
© 2014, Society for Industrial and Applied Mathematics info:eu-repo/semantics/openAccess |
Palavras-Chave | #Linear semi-infinite programming #Linear multiobjective optimization #Robust optimization #Duality #Estadística e Investigación Operativa |
Tipo |
info:eu-repo/semantics/article |