A Note on Iterations-based Derivations of High-order Homogenization Correctors for Multiscale Semi-linear Elliptic Equations
Data(s) |
2016
|
---|---|
Resumo |
This Note aims at presenting a simple and efficient procedure to derive the structure of high-order corrector estimates for the homogenization limit applied to a semi-linear elliptic equation posed in perforated domains. Our working technique relies on monotone iterations combined with formal two-scale homogenization asymptotics. It can be adapted to handle more complex scenarios including for instance nonlinearities posed at the boundary of perforations and the vectorial case, when the model equations are coupled only through the nonlinear production terms. |
Formato |
application/pdf |
Identificador |
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-40584 doi:10.1016/j.aml.2016.02.009 ISI:000375523100016 |
Idioma(s) |
eng |
Publicador |
Karlstads universitet, Institutionen för matematik och datavetenskap Gran Sasso Sci Inst |
Relação |
Applied Mathematics Letters, 0893-9659, 2016, 58, s. 103-109 |
Direitos |
info:eu-repo/semantics/openAccess |
Palavras-Chave | #Homogenization #Justification of the asymptotics #Corrector estimates |
Tipo |
Article in journal info:eu-repo/semantics/article text |