8 resultados para Blindheit
Resumo:
Der diagnostische Blick ist einserseits notwendige Voraussetzung zur Festellung von sonderpädagogischem Förderbedarf bzw. entwicklungsspezifischen Förderangeboten, andererseits verengt sich eben dadurch professionelle Wahrnehmung. Sonderpädagogen entgehen dieser Aporie nicht. (Autor)
Resumo:
von Lotharius Frantz Fried, ehedem Joseph Marcus genannt, einem vom Judenthum neubekehrten Christen
Resumo:
durch Johannem Müllern. Mit e. 5-fachen Reg.
Resumo:
Das Usher Syndrom (USH) führt beim Menschen zur häufigsten Form erblicher Taub-Blindheit und wird aufgrund klinischer Merkmale in drei Typen unterteilt (USH1-3). Das Ziel dieser Arbeit war die Analyse der Expression und subzellulären Lokalisation des USH1G-Proteins SANS („Scaffold protein containing Ankyrin repeats and SAM domain“) in der Retina. Ein weiterer Fokus lag auf der Identifikation neuer Interaktionspartner zur funktionellen Charakterisierung von SANS. Im Rahmen der vorliegenden Arbeit konnte ein USH-Proteinnetzwerk identifiziert werden, das im Verbindungscilium und benachbarter Struktur, dem apikalen Innensegment von Photorezeptorzellen lokalisiert ist. Als Netzwerkkomponenten konnten die USH-Proteine SANS, USH2A Isoform b (USH2A), VLGR1b („Very Large G-protein coupled Receptor 1b“, USH2C) sowie Whirlin (USH2D) ermittelt werden. Innerhalb dieses Netzwerkes interagieren die Gerüstproteine SANS und Whirlin direkt miteinander. Die Transmembranproteine USH2A Isoform b und VLGR1b sind durch die direkte Interaktion mit Whirlin in ciliären-periciliären Membranen verankert und projizieren mit ihren langen Ektodomänen in den extrazellulären Spalt zwischen Verbindungscilium und apikalem Innensegment. Darüber hinaus konnte die Partizipation von SANS an Mikrotubuli-assoziiertem Vesikeltransport durch Identifikation neuer Interaktionspartner, wie dem MAGUK-Protein MAGI-2 („Membrane-Associated Guanylate Kinase Inverted-2“) sowie Dynaktin-1 (p150Glued) eruiert werden. Die Funktion des ciliären-periciliären USH-Proteinnetzwerkes könnte demnach in der Aufrechterhaltung benachbarter Membranstrukturen sowie der Beteiligung der Positionierung und Fusion von Transportvesikeln liegen.
Resumo:
Die vorliegende kumulative Arbeit umfasst Analysen zur Aufklärung der molekularen Grundlagen des humanen Usher-Syndroms (USH), der häufigsten Ursache kombinierter vererblicher Taub-Blindheit. Ziel dieser Arbeit war es, neue Erkenntnisse zur Funktion der USH-Proteine und den von ihnen organisierten Protein-Netzwerken in der Photorezeptorzelle zu erhalten. Dadurch sollten weitere Einsichten in die molekularen Ursachen des retinalen Phänotyps von USH gewonnen werden. Die Ergebnisse dieser Analysen wurden in einem Übersichtsartikel (I) und zwei Originalarbeiten (II, III) zusammengestellt.rn Im Übersichtsartikel (I) wurden die vorliegenden Hinweise zusammengefasst, die USH auf Grundlage der molekularen Verbindungen ebenfalls als Ciliopathien definiert. Zudem wird die Bedeutung des periciliären USH-Proteinnetzwerkes für das sensorische Cilium (Außensegment) der Photorezeptorzelle herausgestellt. rn In Publikation II wurde der Aufbau des USH1-USH2-Proteinnetzwerkes als Teil des periciliären Komplexes analysiert, der beim cargo handover von vesikulärer Fracht vom Innensegment- auf den ciliären Transport für die Photorezeptorzelle essentiell ist. Experimentell wurde Ush2a als neuer SANS-Interaktionspartner validiert. Des Weiteren wurde ein ternärer Komplex aus den USH-Proteinen SANS, Ush2a und Whirlin identifiziert, dessen Zusammensetzung durch die phosphorylierungsabhängige Interaktion zwischen SANS und Ush2a reguliert werden könnte. Dieser ternäre Komplex kann sowohl der Integrität der Zielmembran dienen als auch am Transfer von Molekülen ins Außensegment beteiligt sein.rn In Publikation III wurde das MAGUK-Protein Magi2 als neuer Interaktionspartner von SANS identifiziert und die Interaktion durch komplementäre Interaktionsassays validiert. Dabei wurde ein internes PDZ-Binde-Motiv in der SAM-Domäne von SANS identifiziert, das die Interaktion zur PDZ5-Domäne von Magi2 phosphorylierungsabhängig vermittelt. Dadurch wurde bestätigt, dass SANS durch post-translationale Modifizierung reguliert wird. Weiterführende Experimente zur Funktion des Magi2-SANS-Komplexes zeigen, dass Magi2 an Prozess der Rezeptor-vermittelten Endocytose beteiligt ist. Die Phosphorylierung von SANS durch die Kinase CK2 spielt bei der Endocytose ebenfalls eine wichtige Rolle. Der Phosphorylierungsstatus von SANS moduliert die Interaktion zu Magi2 und reguliert dadurch negativ den Prozess der Endocytose. In RNAi-Studien wurde die durch Magi2-vermittelte Endocytose darüber hinaus mit dem Prozess der Ciliogenese verknüpft. Die Analyse der subzellulären Verteilung der Interaktionspartner lokalisieren Magi2 im periciliären Komplex und assoziieren das periciliäre USH-Proteinnetzwerk dadurch mit dem Prozess der Endocytose in der ciliary pocket. Der SANS-Magi2-Komplex sollte demnach für Aufbau und Funktion des sensorischen Ciliums der Photorezeptorzelle eine wichtige Rolle spielen.rn Die Gesamtheit an Informationen, die aus den Publikationen dieser Dissertation und aus den Kooperationsprojekten (*) resultieren, haben die Kenntnisse zur zellulären Funktion der USH-Proteine und ihrer Interaktionspartner und damit über die pathogenen Mechanismen von USH erweitert. Dies bildet die Basis, um fundierte Therapiestrategien zu entwickeln.
Resumo:
Analysen zur molekularen Charakterisierung von Proteinen des humanen Usher-Syndroms und Evaluation genbasierter Therapiestrategien rnDas humane Usher Syndrom (USH) ist die häufigste Form vererbter Taub-Blindheit. In der vorliegenden Dissertation wurde diese komplexe Erkrankung auf verschiedenen Ebenen analysiert: in Arbeiten zur Expression und Lokalisation von USH-Proteinen, der Analyse der USH-Proteinnetzwerke und deren Funktionen sowie darauf aufbauend die Entwicklung von Therapiestrategien für USH.rnIm Rahmen der Arbeit wurde die Expression und (sub)-zelluläre Lokalisation des USH1D-Genproduktes CDH23 in der Retina und Cochlea analysiert. CDH23-Isoformen werden in der Maus zeitlich und räumlich differentiell exprimiert. In den Retinae von Mäusen, nicht humanen Primaten und Menschen zeigten Analysen eine unterschiedliche Expression und Lokalisation des Zell-Zelladhäsionsmoleküls CDH23, was auf Funktions-unterschiede der einzelnen Isoformen in den analysierten Spezies hindeutet.rnAnalysen zur Aufklärung der USH-Proteinnetzwerke ergaben eine potentielle Interaktion des USH1G-Gerüstproteins SANS mit dem Golgi- und Centrosom-assoziierten Protein Myomegalin. Die direkte Interaktion der Proteine konnte durch unabhängige Experimente verifiziert werden. Beide Interaktionspartner sind in den Retinae verschiedener Spezies partiell ko-lokalisiert und partizipieren im periciliären USH-Proteinnetzwerk. Die Assoziation von SANS und Myomegalin mit dem Mikrotubuli-Cytoskelett weist auf eine Funktion des Proteinkomplexes in gerichteten Transportprozessen innerhalb der Photorezeptoren hin und bekräftigt die Hypothese einer Rolle von SANS und assoziierten Netzwerken mit Transportprozessen.rnDas hier gewonnene erweiterte Verständnis der molekularen Grundlagen sowie die Aufklärung der zellulären Funktion der Proteinnetzwerke ermöglichen die Entwicklung therapeutischer Strategien für USH. Ein Fokus der vorliegenden Arbeit lag auf der Entwicklung genbasierter Therapiestrategien und deren Evaluation, wobei der Schwerpunkt auf der Therapiestrategie der Genreparatur lag. Die mit Hilfe von Zinkfinger-Nukleasen (ZFN) induzierte Homologe Rekombination für die Genkorrektur wurde exemplarisch an der 91C>T/p.R31X-Mutation im USH1C-Gen gezeigt. Effiziente ZFN wurden identifiziert, generiert und erfolgreich im Zellkulturmodellsystem eingesetzt. Die Analysen demonstrierten eine Reparatur der Mutation durch Homologe Rekombination auf genomischer Ebene und die Expression des wiederhergestellten Proteins. Durch die Genkorrektur im endogenen Lokus sind Größe des Gens, Isoformen oder die Art der Mutation keine limitierenden Faktoren für die Therapie. Die in der vorliegenden Arbeit durchgeführten Experimente unterstreichen das enorme Potential ZFN-basierter Therapiestrategien hin zu personalisierten Therapieformen nicht nur für USH sondern auch für andere erbliche Erkrankungen, deren genetische Grundlagen bekannt sind.rn
Resumo:
Blindversuch ist eine dreiwöchige performative Arbeit im Rahmen meiner plastisch-künstlerischen Arbeit, die ich im Februar 2007 durchgeführt habe. Über einen Zeitraum von drei Wochen habe ich meine Augen verschlossen und das physische Sehen eingestellt. Damit verzichtete ich freiwillig auf mein wichtigstes künstlerisches Werkzeug. Ich gab vor, blind zu sein und trug die Zeichen des Blindseins: Brille, Armbinde und einen weißen Stock. Unter der Bedingung des Nicht-Sehens und in der Begleitung von Assistenten führte ich mein Leben und Arbeiten weiter. Während dieser Zeit ersetzte ich meine visuelle Wahrnehmung durch technische Mittel. Ohne zu sehen produzierte ich mit Fotoapparat und Videokamera visuelles Material. Diese Aufnahmen entstanden infolge motorisch-akustisch-haptischer Eindrücke und situativer Reflexionen. Ergänzt werden meine Aufnahmen durch visuelles Fremdmaterial. Verschiedene Personen wurden beauftragt, mich filmisch und fotografisch zu begleiten. Auch ich selbst erstellte eine Audiodokumentation meiner Erfahrungen und Reflexionen als Nicht-Sehende: Wahrnehmung, Untersuchung und Notierung der veränderten rezeptiven Bedingungen. Es fand eine bewusste Aneignung des Raums als Nicht-Sehende statt. Dazu habe ich meine Fähigkeiten sowohl im Atelier als auch im Außenraum trainiert. Darüber hinaus wurde der Blindversuch durch das Max-Planck-Institut für Hirnforschung in Frankfurt am Main wissenschaftlich begleitet.