997 resultados para Bienaymé-Galton-Watson process
Resumo:
AMS subject classification: 60J80, 62F12, 62P10.
Resumo:
Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.
Resumo:
A Superadditive Bisexual Galton-Watson Branching Process is considered and the total number of mating units, females and males, until the n-th generation, are studied. In particular some results about the stochastic monotony, probability generating functions and moments are obtained. Finally, the limit behaviour of those variables suitably normed is investigated.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
AMS subject classification: 60J80, 60J15.
Resumo:
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
Resumo:
The classical Bienaymé-Galton-Watson (BGW) branching process can be interpreted as mathematical model of population dynamics when the members of an isolated population reproduce themselves independently of each other according to a stochastic law.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62P05.
Resumo:
Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classi cation: 60J80.
Resumo:
In dieser Arbeit wird eine Klasse von stochastischen Prozessen untersucht, die eine abstrakte Verzweigungseigenschaft besitzen. Die betrachteten Prozesse sind homogene Markov-Prozesse in stetiger Zeit mit Zuständen im mehrdimensionalen reellen Raum und dessen Ein-Punkt-Kompaktifizierung. Ausgehend von Minimalforderungen an die zugehörige Übergangsfunktion wird eine vollständige Charakterisierung der endlichdimensionalen Verteilungen mehrdimensionaler kontinuierlicher Verzweigungsprozesse vorgenommen. Mit Hilfe eines erweiterten Laplace-Kalküls wird gezeigt, dass jeder solche Prozess durch eine bestimmte spektral positive unendlich teilbare Verteilung eindeutig bestimmt ist. Umgekehrt wird nachgewiesen, dass zu jeder solchen unendlich teilbaren Verteilung ein zugehöriger Verzweigungsprozess konstruiert werden kann. Mit Hilfe der allgemeinen Theorie Markovscher Operatorhalbgruppen wird sichergestellt, dass jeder mehrdimensionale kontinuierliche Verzweigungsprozess eine Version mit Pfaden im Raum der cadlag-Funktionen besitzt. Ferner kann die (funktionale) schwache Konvergenz der Prozesse auf die vage Konvergenz der zugehörigen Charakterisierungen zurückgeführt werden. Hieraus folgen allgemeine Approximations- und Konvergenzsätze für die betrachtete Klasse von Prozessen. Diese allgemeinen Resultate werden auf die Unterklasse der sich verzweigenden Diffusionen angewendet. Es wird gezeigt, dass für diese Prozesse stets eine Version mit stetigen Pfaden existiert. Schließlich wird die allgemeinste Form der Fellerschen Diffusionsapproximation für mehrtypige Galton-Watson-Prozesse bewiesen.
Resumo:
Im Verzweigungsprozess mit Immigration werden Schätzer für die erwartete Nachkommenzahl m eines Individuums und die erwartete Immigration λ pro Generation konstruiert. Sie sind nur aufgrund der beobachteten Populationsgröße einer jeden Generation konsistent, ohne Vorkenntnis darüber, ob der Prozess subkritisch (m<1), kritisch (m=1) oder superkritisch (m>1) ist. Im superkritischen Fall ist der Schätzer für λ jedoch nicht konsistent. Dies ist aber keine Einschränkung, denn es wird gezeigt, dass in diesem Fall kein konsistenter Schätzer für λ existiert. Des Weiteren werden Konvergenzgeschwindigkeit der Schätzer und asymptotische Verteilungen der Schätzfehler untersucht. Dabei werden die Fälle (m<1), (m>1) und (m=1) unterschieden, was gänzlich verschiedene Vorgehensweisen erfordert (Ergodizität, Martingalmethoden, Diffusionsapproximationen). Diese hier vorliegende Diplomarbeit orientiert sich an den Ideen und Ergebnissen von Wei und Winnicki (1989/90).
Resumo:
2000 Mathematics Subject Classification: 60J80, 62P05.
Resumo:
2000 Mathematics Subject Classification: 60J80.