79 resultados para BPR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competitive markets are increasingly driving new initiatives for shorter cycle times resulting in increased overlapping of project phases. This, in turn, necessitates improving the interfaces between the different phases to be overlapped (integrated), thus allowing transfer of processes, information and knowledge from one individual or team to another. This transfer between phases, within and between projects, is one of the basic challenges to the philosophy of project management. To make the process transfer more transparent with minimal loss of momentum and project knowledge, this paper draws upon Total Quality Management (TQM) and Business Process Re-engineering (BPR) philosophies to develop a Best Practice Model for managing project phase integration. The paper presents the rationale behind the model development and outlines its two key parts; (1) Strategic Framework and (2) Implementation Plan. Key components of both the Strategic Framework and the Implementation Plan are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding sites in hen egg-white lysozyme for neutral bromophenol red (BPR) and ionized bromophenol blue (BPB) have been characterized at 2 Å resolution. In either case, the dye-bound enzyme is active against the polysaccharide, but not against the cell wall. Both binding sites are outside, but close to, the hexasaccharide binding cleft in the enzyme. The binding site of BPR made up of Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possibly Arg125, is dose to subsite F while that of BPB made up of Tyr20, Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsites A and B. The binding sites of the neutral dye and the ionized dye are thus spatially far apart. The peptide component of the bacterial cell wall probably interacts with these cells during enzyme action. Such interactions are perhaps necessary for appropriately positioning the enzyme molecule on the bacterial cell wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo analizan la recepción en España de uno de los principales conceptos de gestión de la década de los 90, la reingeniería de procesos o BPR, a través de dos "canales de transmisión" de especial relevancia: la literatura de gestión y las empresas de consultoría. Se muestra cómo las ideas iniciales del BPR fueron adaptadas y reformuladas, y terminaron siendo incorporadas dentro de la perspectiva de la gestión de la calidad total, dominante en España e inicialmente considerada opuesta al BPR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accurate cancer classification is of great importance in clinical treatment. Recently, the DNA microarray technology provides a promising approach to the diagnosis and prognosis of cancer types. However, it has no perfect method for the multiclass classification problem. The difficulty lies in the fact that the data are of high dimensionality with small sample size. This paper proposed an automatic classification method of multiclass cancers based on Biomimetic pattern recognition (BPR). To the public GCM data set, the average correct classification rate reaches 80% under the condition that the correct rejection rate is 81%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new classifier of speaker identification has been proposed, which is based on Biomimetic pattern recognition (BPR). Distinguished from traditional speaker recognition methods, such as DWT, HMM, GMM, SVM and so on, the proposed classifier is constructed by some finite sub-space which is reasonable covering of the points in high dimensional space according to distributing characteristic of speech feature points. It has been used in the system of speaker identification. Experiment results show that better effect could be obtained especially with lesser samples. Furthermore, the proposed classifier employs a much simpler modeling structure as compared to the GMM. In addition, the basic idea "cognition" of Biomimetic pattern recognition (BPR) results in no requirement of retraining the old system for enrolling new speakers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correct classification of different metabolic cycle stages to identification cell cycle is significant in both human development and clinical diagnostics. However, it has no perfect method has been reached in classification of metabolic cycle yet. This paper exploringly puts forward an automatic classification method of metabolic cycle based on Biomimetic pattern recognition (BPR). As to the three phases of yeast metabolic cycle, the correct classification rate reaches 90%, 100% and 100% respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In speaker-independent speech recognition, the disadvantage of the most diffused technology (HMMs, or Hidden Markov models) is not only the need of many more training samples, but also long train time requirement. This paper describes the use of Biomimetic pattern recognition (BPR) in recognizing some mandarin continuous speech in a speaker-independent manner. A speech database was developed for the course of study. The vocabulary of the database consists of 15 Chinese dish's names, the length of each name is 4 Chinese words. Neural networks (NNs) based on Multi-weight neuron (MWN) model are used to train and recognize the speech sounds. The number of MWN was investigated to achieve the optimal performance of the NNs-based BPR. This system, which is based on BPR and can carry out real time recognition reaches a recognition rate of 98.14% for the first option and 99.81% for the first two options to the persons from different provinces of China speaking common Chinese speech. Experiments were also carried on to evaluate Continuous density hidden Markov models (CDHMM), Dynamic time warping (DTW) and BPR for speech recognition. The Experiment results show that BPR outperforms CDHMM and DTW especially in the cases of samples of a finite size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a new scheme for omnidirectional object-recognition in free space. The proposed scheme divides above problem into several onmidirectional object-recognition with different depression angles. An onmidirectional object-recognition system with oblique observation directions based on a new recognition theory-Biomimetic Pattern Recognition (BPR) is discussed in detail. Based on it, we can get the size of training samples in the onmidirectional object-recognition system in free space. Omnidirection ally cognitive tests were done on various kinds of animal models of rather similar shapes. For the total 8400 tests, the correct recognition rate is 99.89%. The rejection rate is 0.11% and on the condition of zero error rates. Experimental results are presented to show that the proposed approach outperforms three types of SVMs with either a three degree polynomial kernel or a radial basis function kernel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In speaker-independent speech recognition, the disadvantage of the most diffused technology ( Hidden Markov Models) is not only the need of many more training samples, but also long train time requirement. This paper describes the use of Biomimetic Pattern Recognition (BPR) in recognizing some Mandarin Speech in a speaker-independent manner. The vocabulary of the system consists of 15 Chinese dish's names. Neural networks based on Multi-Weight Neuron (MWN) model are used to train and recognize the speech sounds. Experimental results are presented to show that the system, which can carry out real time recognition of the persons from different provinces speaking common Chinese speech, outperforms HMMs especially in the cases of samples of a finite size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existing methods for the discrimination of varieties of commodity corn seed are unable to process batch data and speed up identification, and very time consuming and costly. The present paper developed a new approach to the fast discrimination of varieties of commodity corn by means of near infrared spectral data. Firstly, the experiment obtained spectral data of 37 varieties of commodity corn seed with the Fourier transform near infrared spectrometer in the wavenurnber range from 4 000 to 12 000 cm (1). Secondly, the original data were pretreated using statistics method of normalization in order to eliminate noise and improve the efficiency of models. Thirdly, a new way based on sample standard deviation was used to select the characteristic spectral regions, and it can search very different wavenumbers among all wavenumbers and reduce the amount of data in part. Fourthly, principal component analysis (PCA) was used to compress spectral data into several variables, and the cumulate reliabilities of the first ten components were more than 99.98%. Finally, according to the first ten components, recognition models were established based on BPR. For every 25 samples in each variety, 15 samples were randomly selected as the training set. The remaining 10 samples of the same variety were used as the first testing set, and all the 900 samples of the other varieties were used as the second testing set. Calculation results showed that the average correctness recognition rate of the 37 varieties of corn seed was 94.3%. Testing results indicate that the discrimination method had higher precision than the discrimination of various kinds of commodity corn seed. In short, it is feasible to discriminate various varieties of commodity corn seed based on near infrared spectroscopy and BPR.