933 resultados para BIOORGANIC CHEMISTRY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The o-quinone of DOPA, an important intermediate implicated in many biological processes, has been found to react with methionine. The product has been isolated and studied, and tentative structure has been assigned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure-activity relationships. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wydział Chemii

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C-1-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the gamma-phosphorus of ATP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endophytic fungus Epicoccum nigrum was isolated from sugarcane and the bioguided fractionation of the ethyl acetate extract led to the isolation of epicolactone, mellein, and 4,5-dimethylresorcinol. Characterization of epicolactone by MS, NMR and X-ray crystallography revealed a new natural product with an unusual carbon skeleton. The production of this secondary metabolite decreased in mutants of Epicoccum nigrum transformed by Agrobacterium tumefaciens. Additionally, these mutants produced 4-hydroxymellein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and differential antiproliferative activity of monastrol (1a), oxo-monastrol (1b) and eight oxygenated derivatives 3a,b–6a,b on seven human cancer cell lines are described. For all evaluated cell lines, monastrol (1a) was shown to be more active than its oxo-analogue, except for HT-29 cell line, suggesting the importance of the sulfur atom for the antiproliferative activity. Monastrol (1a) and the thio-derivatives 3a, 4a and 6a displayed relevant antiproliferative properties with 3,4-methylenedioxy derivative 6a being approximately more than 30 times more potent than monastrol (1a) against colon cancer (HT-29) cell line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5 mu M for EeAChE and 153.8 mu M for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4 mu M (EeAChE) and 277.8 mu M (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rivastigmine is a very important drug prescribed for the treatment of Alzheimer's disease (AD) symptoms. It is a dual inhibitor, in that it inhibits both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). For our screening program on the discovery of new rivastigmine analogue hits for human butyrylcholinesterase (hBuChE) inhibition, we investigated the interaction of this inhibitor with BuChE using the complimentary approach of the biophysical method, saturation transfer difference (STD)-NMR and molecular docking. This allowed us to obtain essential information on the key binding interactions between the inhibitor and the enzyme to be used for screening of hit compounds. The main conclusions obtained from this integrated study was that the most dominant interactions were (a) H-bonding between the carbamate carbonyl of the inhibitor and the NH group of the imidazole unit of H434, (b) stacking of the aromatic unit of the inhibitor and the W82 aromatic unit in the choline binding pocket via pi-pi interactions and (c) possible CH/pi interactions between the benzylic methyl group and the N-methyl groups of the inhibitor and W82 of the enzyme.