777 resultados para BIODEGRADABLE POLYMER
Resumo:
Objectives: We tested two novel drug-eluting stents (DES), covered with a biodegradable-polymer carrier and releasing paclitaxel or sirolimus, which were compared against a bare metal stent (primary objective). The DES differed by the drug, but were identical otherwise, allowing to compare the anti-restenosis effects of sirolimus versus paclitaxel (secondary objective). Background: The efficacy of novel DES with biodegradable polymers should be tested in the context of randomized trials, even when using drugs known to be effective, such as sirolimus and paclitaxel. Methods: Overall, 274 patients with de novo coronary lesions in native vessels scheduled for stent implantation were randomly assigned (2:21 ratio) for the paclitaxel (n = 111), sirolimus (n = 106), or bare metal stent (n = 57) groups. Angiographic follow-up was obtained at 9 months and major cardiac adverse events up to 12 months. Results: Both paclitaxel and sirolimus stents reduced the 9-month in-stent late loss (0.54-0.44 mm, 0.32-0.43 mm, vs. 0.90-0.45 mm respectively), and 1-year risk of target vessel revascularization and combined major adverse cardiac events (P < 0.05 for both, in all comparisons), compared with controls. Sirolimus stents had lower late loss than paclitaxel stents (P < 0.01), but similar 1-year clinical outcomes. There were no differences in the risk of death, infarction, or stent thrombosis among the study groups. Conclusion: Both novel DES were effective in reducing neointimal hyperplasia and 1-year re-intervention, compared to bare metal stents. Our findings also suggest that sirolimus is more effective than paclitaxel in reducing angiographic neointima, although this effect was not associated with better clinical outcomes. (C) 2009 Wiley-Liss, Inc.
Resumo:
BACKGROUND: Refinements in stent design affecting strut thickness, surface polymer, and drug release have improved clinical outcomes of drug-eluting stents. We aimed to compare the safety and efficacy of a novel, ultrathin strut cobalt-chromium stent releasing sirolimus from a biodegradable polymer with a thin strut durable polymer everolimus-eluting stent. METHODS: We did a randomised, single-blind, non-inferiority trial with minimum exclusion criteria at nine hospitals in Switzerland. We randomly assigned (1:1) patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes undergoing percutaneous coronary intervention to treatment with biodegradable polymer sirolimus-eluting stents or durable polymer everolimus-eluting stents. Randomisation was via a central web-based system and stratified by centre and presence of ST segment elevation myocardial infarction. Patients and outcome assessors were masked to treatment allocation, but treating physicians were not. The primary endpoint, target lesion failure, was a composite of cardiac death, target vessel myocardial infarction, and clinically-indicated target lesion revascularisation at 12 months. A margin of 3·5% was defined for non-inferiority of the biodegradable polymer sirolimus-eluting stent compared with the durable polymer everolimus-eluting stent. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT01443104. FINDINGS: Between Feb 24, 2012, and May 22, 2013, we randomly assigned 2119 patients with 3139 lesions to treatment with sirolimus-eluting stents (1063 patients, 1594 lesions) or everolimus-eluting stents (1056 patients, 1545 lesions). 407 (19%) patients presented with ST-segment elevation myocardial infarction. Target lesion failure with biodegradable polymer sirolimus-eluting stents (69 cases; 6·5%) was non-inferior to durable polymer everolimus-eluting stents (70 cases; 6·6%) at 12 months (absolute risk difference -0·14%, upper limit of one-sided 95% CI 1·97%, p for non-inferiority <0·0004). No significant differences were noted in rates of definite stent thrombosis (9 [0·9%] vs 4 [0·4%], rate ratio [RR] 2·26, 95% CI 0·70-7·33, p=0·16). In pre-specified stratified analyses of the primary endpoint, biodegradable polymer sirolimus-eluting stents were associated with improved outcome compared with durable polymer everolimus-eluting stents in the subgroup of patients with ST-segment elevation myocardial infarction (7 [3·3%] vs 17 [8·7%], RR 0·38, 95% CI 0·16-0·91, p=0·024, p for interaction=0·014). INTERPRETATION: In a patient population with minimum exclusion criteria and high adherence to dual antiplatelet therapy, biodegradable polymer sirolimus-eluting stents were non-inferior to durable polymer everolimus-eluting stents for the combined safety and efficacy outcome target lesion failure at 12 months. The noted benefit in the subgroup of patients with ST-segment elevation myocardial infarction needs further study. FUNDING: Clinical Trials Unit, University of Bern, and Biotronik, Bülach, Switzerland.
Resumo:
BACKGROUND: Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt-chromium drug-eluting stent with silicon carbide-coating releasing sirolimus from a biodegradable polymer (O-SES, Orsiro; Biotronik, Bülach, Switzerland) with the durable polymer-based Xience Prime/Xpedition everolimus-eluting stent (EES) (Xience Prime/Xpedition stent, Abbott Vascular, IL) in an all-comers patient population. DESIGN: The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer sirolimus-eluting stents (SES) or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least 1 lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary end point target lesion failure (TLF) is a composite of cardiac death, target vessel myocardial infarction, and clinically driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for noninferiority, inclusion of 2,060 patients would provide more than 80% power to detect noninferiority of the biodegradable polymer SES compared with the durable polymer EES at a 1-sided type I error of 0.05. Clinical follow-up will be continued through 5 years. CONCLUSION: The BIOSCIENCE trial will determine whether the biodegradable polymer SES is noninferior to the durable polymer EES with respect to TLF.
Resumo:
The large use of plastics in the world generates a large amount of waste which persists around 200 years in the environment. To minimize this effect is important to search some new polymer materials: the blends of biodegradable polymers with synthetic polymers. It is a large area that needs an Intensive research to investigate the blends properties and its behavior face to the different treatments to aim at the blodegradation. The blends used In this work are: some blodegradable polymers such as: poly(hydroxybutyrate) (PHB) and poly(s-polycaprolactone) (PCL) with a synthetic polymer, polypropylene (PP), in lower concentration. These blends were prepared using an internal mixer (Torque Rheometer), and pressed. These films were submitted to fungus biotreatment. The films analyses will be carried out by Fourier Transform Infrared (FTIR), UV-Vis absorption (UV-Vis), Scanning Electronic Microscopy (SEM), DSC and TGA. © 2008 American Institute of Physics.
Resumo:
This study reports the 12-month clinical outcomes of the LEADERS clinical trial which compared a biolimus eluting stent with a biodegradable polymer (BES) to a sirolimus eluting stent with a durable polymer (SES).
Resumo:
Background The effectiveness of durable polymer drug-eluting stents comes at the expense of delayed arterial healing and subsequent late adverse events such as stent thrombosis (ST). We report the 4 year follow-up of an assessment of biodegradable polymer-based drug-eluting stents, which aim to improve safety by avoiding the persistent inflammatory stimulus of durable polymers. Methods We did a multicentre, assessor-masked, non-inferiority trial. Between Nov 27, 2006, and May 18, 2007, patients aged 18 years or older with coronary artery disease were randomly allocated with a computer-generated sequence to receive either biodegradable polymer biolimus-eluting stents (BES) or durable polymer sirolimus-eluting stents (SES; 1:1 ratio). The primary endpoint was a composite of cardiac death, myocardial infarction, or clinically-indicated target vessel revascularisation (TVR); patients were followed-up for 4 years. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00389220. Findings 1707 patients with 2472 lesions were randomly allocated to receive either biodegradable polymer BES (857 patients, 1257 lesions) or durable polymer SES (850 patients, 1215 lesions). At 4 years, biodegradable polymer BES were non-inferior to durable polymer SES for the primary endpoint: 160 (18·7%) patients versus 192 (22·6%) patients (rate ratios [RR] 0·81, 95% CI 0·66–1·00, p for non-inferiority <0·0001, p for superiority=0·050). The RR of definite ST was 0·62 (0·35–1·08, p=0·09), which was largely attributable to a lower risk of very late definite ST between years 1 and 4 in the BES group than in the SES group (RR 0·20, 95% CI 0·06–0·67, p=0·004). Conversely, the RR of definite ST during the first year was 0·99 (0·51–1·95; p=0·98) and the test for interaction between RR of definite ST and time was positive (pinteraction=0·017). We recorded an interaction with time for events associated with ST but not for other events. For primary endpoint events associated with ST, the RR was 0·86 (0·41–1·80) during the first year and 0·17 (0·04–0·78) during subsequent years (pinteraction=0·049). Interpretation Biodegradable polymer BES are non-inferior to durable polymer SES and, by reducing the risk of cardiac events associated with very late ST, might improve long-term clinical outcomes for up to 4 years compared with durable polymer SES. Funding Biosensors Europe SA, Switzerland.
Resumo:
Aims: The current study reports clinical outcomes at three year follow-up of the LEADERS clinical trial which was the first all-comers trial comparing a new generation biodegradable polymer biolimus drug-eluting stent (BES) with the first generation permanent polymer sirolimus-eluting stent (SES). Methods and results: One thousand seven hundred and seven patients were randomised to unrestricted use of BES (n=857) or SES (n=850) in an all-comers population. Three year follow-up was available in 95% of the patients, 812 treated with BES and 809 treated with SES. At three years, BES remains non-inferior to SES for the primary endpoint of major adverse cardiac events (composite of cardiac death, myocardial infarction (MI), or clinically-indicated target vessel revascularisation (CI-TVR) (BES 15.7% versus SES 19%; HR 0.82 CI 0.65-1.03; p=0.09). The MACE Kaplan Meier event curves increasingly diverge with the difference in events increasing from 1.4% to 2.4% and 3.3% at 1, 2 and 3 years, respectively in favour of BES. The rate of cardiac death was non-significantly lower 4.2% versus 5.2% (HR=0.81 CI 0.52-1.26; p=0.34) and the rate of myocardial infarction was equivalent 7.2% versus 7.1% (HR 1.01 CI 0.70-1.44; p=0.97) for BES versus SES, respectively. Thus BES was non-inferior to SES in all the safety endpoints. Clinically-indicated TVR occurred in 9.4% of BES treated patients versus 11.1% of SES treated patients (HR 0.84 CI 0.62-1.13; p=0.25). Rates of definite stent thrombosis were 2.2% for BES and 2.9% for SES (HR 0.78 CI 0.43-1.43; p=0.43), with the event rate increase of 0.2% from one to three years for BES and 0.9% for SES. For patients presenting with ST-elevation myocardial infarction BES was superior to SES in reducing MACE. Conclusions: The findings of the three year follow-up support the claim that the biodegradable polymer biolimus-eluting stent has equivalent safety and efficacy to permanent polymer sirolimus-eluting stent in an all-comers patient population. Its performance is superior in some subpopulations such as in ST-elevation MI patients and event rates for BES are overall lower than for SES with a trend toward increasing divergence of outcomes over three years. - See more at: http://www.pcronline.com/eurointervention/42nd_issue/125/#sthash.E5HhMQ4a.dpuf
Resumo:
Background: The SYNTAX score (SXscore) has been shown to be an effective predictor of clinical outcomes in patients undergoing percutaneous coronary intervention (PCI).
Methods and results: The SXscore was prospectively collected in 1,397 of the 1,707 patients enrolled in the “all-comers” LEADERS trial (patients post-surgical revascularisation were excluded). Post hoc analysis was performed by stratifying clinical outcomes at two-year follow-up, according to one of three SXscore tertiles:
SXlow ≤8 (n=464), 8
Resumo:
Objectives This study sought to investigate safety and efficacy of biolimus-eluting stents (BES) with biodegradable polymer as compared with sirolimus-eluting stents (SES) with durable polymer through 2 years of follow-up. Background BES with a biodegradable polymer provide similar efficacy and safety as SES with a durable polymer at 9 months. Clinical outcomes beyond the period of biodegradation of the polymer used for drug release and after discontinuation of dual antiplatelet therapy are of particular interest. Methods A total of 1,707 patients were randomized to unrestricted use of BES (n = 857) or SES (n = 850) in an all-comers patient population. Results At 2 years, BES remained noninferior compared with SES for the primary endpoint, which was a composite of cardiac death, myocardial infarction, or clinically indicated target vessel revascularization (BES 12.8% vs. SES 15.2%, hazard ratio [HR]: 0.84, 95% confidence interval [CI]: 0.65 to 1.08, pnoninferiority < 0.0001, psuperiority = 0.18). Rates of cardiac death (3.2% vs. 3.9%, HR: 0.81, 95% CI: 0.49 to 1.35, p = 0.42), myocardial infarction (6.3% vs. 5.6%, HR: 1.12, 95% CI: 0.76 to 1.65, p = 0.56), and clinically indicated target vessel revascularization (7.5% vs. 8.6%, HR: 0.86, 95% CI: 0.62 to 1.20, p = 0.38) were similar for BES and SES. The rate of definite stent thrombosis through 2 years was 2.2% for BES and 2.5% for SES (p = 0.73). For the period between 1 and 2 years, event rates for definite stent thrombosis were 0.2% for BES and 0.5% for SES (p = 0.42). After discontinuation of dual antiplatelet therapy, no very late definite stent thrombosis occurred in the BES group. Conclusions At 2 years of follow-up, the unrestricted use of BES with a biodegradable polymer maintained a similar safety and efficacy profile as SES with a durable polymer. (Limus Eluted From a Durable Versus Erodable Stent Coating [LEADERS]; NCT00389220)
Resumo:
The efficacy of durable polymer drug-eluting stents (DES) is delivered at the expense of delayed healing of the stented vessel. Biodegradable polymer DES aim to avoid this shortcoming and may potentially improve long-term clinical outcomes, with benefit expected to accrue over time. We sought to compare long-term outcomes in patients treated with biodegradable polymer DES vs. durable polymer sirolimus-eluting stents (SES).
Resumo:
The efficacy and safety of drug-eluting stents compared with bare-metal stents remains controversial in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI).
Resumo:
Biodegradable polymer/clay nanocomposites were prepared withpristine and organically modified montmorillonite in polylactic acid (PLA) and polycaprolactone (PCL) polymer matrices. Nanocomposites were fabricated using extrusion and SSSP to compare the effects of melt-state and solid-state processing on the morphology of the final nanocomposite. Characterization of various material properties was performed on prepared biodegradable polymer/clay nanocomposites to evaluate property enhancements from different clays and/or processing methods.
Resumo:
BACKGROUND: A novel stent platform eluting biolimus, a sirolimus analogue, from a biodegradable polymer showed promising results in preliminary studies. We compared the safety and efficacy of a biolimus-eluting stent (with biodegradable polymer) with a sirolimus-eluting stent (with durable polymer). METHODS: We undertook a multicentre, assessor-blind, non-inferiority study in ten European centres. 1707 patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes were centrally randomised by a computer-generated allocation sequence to treatment with either biolimus-eluting (n=857) or sirolimus-eluting (n=850) stents. The primary endpoint was a composite of cardiac death, myocardial infarction, or clinically-indicated target vessel revascularisation within 9 months. Analysis was by intention to treat. 427 patients were randomly allocated to angiographic follow-up, with in-stent percentage diameter stenosis as principal outcome measure at 9 months. The trial is registered with ClinicalTrials.gov, number NCT00389220. FINDINGS: We analysed all randomised patients. Biolimus-eluting stents were non-inferior to sirolimus-eluting stents for the primary endpoint at 9 months (79 [9%] patients vs 89 [11%], rate ratio 0.88 [95% CI 0.64-1.19], p for non-inferiority=0.003, p for superiority=0.39). Frequency of cardiac death (14 [1.6%] vs 21 [2.5%], p for superiority=0.22), myocardial infarction (49 [5.7%] vs 39 [4.6%], p=0.30), and clinically-indicated target vessel revascularisation (38 [4.4%] vs 47 [5.5%], p=0.29) were similar for both stent types. 168 (79%) patients in the biolimus-eluting group and 167 (78%) in the sirolimus-eluting group had data for angiographic follow-up available. Biolimus-eluting stents were non-inferior to sirolimus-eluting stents in in-stent percentage diameter stenosis (20.9%vs 23.3%, difference -2.2% [95% CI -6.0 to 1.6], p for non-inferiority=0.001, p for superiority=0.26). INTERPRETATION: Our results suggest that a stent eluting biolimus from a biodegradable polymer represents a safe and effective alternative to a stent eluting sirolimus from a durable polymer in patients with chronic stable coronary artery disease or acute coronary syndromes. FUNDING: Biosensors Europe SA, Switzerland.
Resumo:
OBJECTIVES: We assessed the impact of vessel size on outcomes of stenting with biolimus-eluting degradable polymer stent (BES) and sirolimus-eluting permanent polymer stent (SES) within a randomized multicenter trial (LEADERS). BACKGROUND: Stenting of small vessels might be associated with higher rates of adverse events. METHODS: "All-comer" patients (n = 1,707) were randomized to BES and SES. Post-hoc-stratified analysis of angiographic and clinical outcomes at 9 months and 1 year, respectively, was performed for vessels with reference diameter
Resumo:
AIMS: Lesion length remains a predictor of target lesion revascularisation and results of long lesion stenting remain poor. Sirolimus-eluting stents have been shown to perform better than paclitaxel eluting stents in long lesions. In this substudy of the LEADERS trial, we compared the performance of biolimus biodegradable polymer (BES) and sirolimus permanent polymer stents (SES) in long lesions. METHODS AND RESULTS: A total of 1,707 'all-comer' patients were randomly allocated to treatment with BES and SES. A stratified analysis of angiographic and clinical outcomes at nine months and one year, respectively was performed for vessels with lesion length <20 mm versus >20 mm (as measured by quantitative angiography).Of 1,707 patients, 592 BES patients with 831 lesions and 619 SES patients with 876 lesions had only short lesions treated. One hundred and fifty-three BES patients with 166 lesions and 151 SES patients with 162 lesions had long lesions. There were no significant differences in baseline clinical characteristics, except for higher number of patients with long lesions presenting with acute myocardial infarction in both stent groups. Long lesions tended to have lower MLD and greater percent diameter stenosis at baseline than short lesions. Late loss was greater for long lesions than short lesions. There was no statistically significant difference in late loss between BES and SES stents (0.32+/-0.69 vs 0.24+/-0.57, p=0.59). Binary in-segment restenosis was present in 23.2% versus 13.1% of long lesions treated with BES and SES, respectively (p=0.042). In patients with long lesions, the overall MACE rate was similar for BES and SES (17% vs 14.6%; p=0.62). There was a trend towards higher overall TLR rate with BES (12.4 % vs 6.0%; HR=2.06; p=0.07) and clinically driven TLR (10.5% vs 5.3%: HR 1.94; p=0.13). Rates of definite stent thrombosis were 3.3% in the long lesion group and 1.3-1.7 % in the short lesion group. CONCLUSIONS: BES and SES appear similar with respect to MACE in long lesions in this "all-comer" patient population. However, long lesions tended to have a higher rate of binary in-segment restenosis and TLR following BES than SES treatment.