63 resultados para Automorphisms
Resumo:
Let X be a geometrically irreductble smooth projective cruve defined over R. of genus at least 2. that admits a nontrivial automorphism, sigma. Assume that X does not have any real points. Let tau be the antiholomorphic involution of the complexification lambda(C) of X. We show that if the action of sigma on the set S(X) of all real theta characteristics of X is trivial. then the order of sigma is even, say 2k and the automorphism tau o (sigma) over cap (lambda) of X-C has a fixed point, where (sigma) over cap is the automorphism of X x C-R defined by sigma We then show that there exists X with a real point and admitting a nontrivial automorphism sigma, such that the action of sigma on S(X) is trivial, while X/
Resumo:
Let D( m, n; k) be the semi-direct product of two finite cyclic groups Z/m = < x > and Z/n = < y >, where the action is given by yxy(-1) = x(k). In particular, this includes the dihedral groups D(2m). We calculate the automorphism group Aut (D(m, n; k)).
Resumo:
Let A be a finitely generated abelian group. We describe the automorphism group Aut(A) using the rank of A and its torsion part p-part A(p). For a finite abelian p-group A of type (k(1),..., k(n)), simple necessary and sufficient conditions for an n x n-matrix over integers to be associated with an automorphism of A are presented. Then, the automorphism group Aut(A) for a finite p-group A of type (k(1), k(2)) is analyzed. (C) 2008 Mathematical Institute Slovak Academy of Sciences.
Resumo:
Let G be a group such that, for any subgroup H of G, every automorphism of H can be extended to an automorphism of G. Such a group G is said to be of injective type. The finite abelian groups of injective type are precisely the quasi-injective groups. We prove that a finite non-abelian group G of injective type has even order. If, furthermore, G is also quasi-injective, then we prove that G = K x B, with B a quasi-injective abelian group of odd order and either K = Q(8) (the quaternion group of order 8) or K = Dih(A), a dihedral group on a quasi-injective abelian group A of odd order coprime with the order of B. We give a description of the supersoluble finite groups of injective type whose Sylow 2-subgroup are abelian showing that these groups are, in general, not quasi-injective. In particular, the characterisation of such groups is reduced to that of finite 2-groups that are of injective type. We give several restrictions on the latter. We also show that the alternating group A(5) is of injective type but that the binary icosahedral group SL(2, 5) is not.
Resumo:
We apply Nevanlinna theory for algebraic varieties to Danielewski surfaces and investigate their group of holomorphic automorphisms. Our main result states that the overshear group, which is known to be dense in the identity component of the holomorphic automorphism group, is a free product.
Resumo:
We show the existence of free dense subgroups, generated by two elements, in the holomorphic shear and overshear group of complex-Euclidean space and extend this result to the group of holomorphic automorphisms of Stein manifolds with the density property, provided there exists a generalized translation. The conjugation operator associated to this generalized translation is hypercyclic on the topological space of holomorphic automorphisms.
Resumo:
Issued also as thesis, University of Illinois.
Resumo:
Thesis (Ph. D.)--Cornell University, August, 1998.
Resumo:
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Resumo:
2000 Mathematics Subject Classification: 17A50, 05C05.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.
Resumo:
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.
Resumo:
Peer reviewed