968 resultados para Asphalt in hydraulic engineering.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution the experiences with e-Learning 2.0 applications by using a Wiki for the education in hydraulic engineering are shown. Up to now important information for the students has been prepared by the instructor. For this project the students were asked to collaborate and search on their own for the information they needed. Therefore a Wiki-system was used. For the engineering practice a self dependent realisation of tasks is an important requirement which students should be prepared for. With the help of online communication there should be shown the possibilities for students for working together in an interdisciplinary team. The positive experiences as well as the results of the evaluation of this project plead for a continuation of the application of e-Learning 2.0 for education. The comparison of results of tests without using Wiki and with using Wiki shows a qualitative tendency of better marks. In this contribution we present the application of Wiki in hydraulic engineering but the results can also be used for other engineering disciplines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.