1000 resultados para Amorphous Semiconductors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic investigation of the effects of antimony dopant on the electronic transport properties of amorphous (GeSe3.5)100−xSbx under high pressure (up to 120 kbar) has been carried out down to liquid-nitrogen temperature for the first time. Differential thermal analysis and x-ray diffraction methods were used for the characterization of freshly prepared and pressure-quenched materials which indicated the presence of structural phase transition in both GeSe3.5 and (GeSe3.5)100−xSbx around 105 kbar pressure. Electrical transport data revealed the strong compositional dependence of the electronic conduction process. A distinct kink in the conductivity temperature plot at pressures>15 kbar was observed in the Sb-doped compositions indicating the presence of different conduction processes. An attempt has been made to interpret the pressure-induced effect in the transport properties of these glasses considering the possible presence of both thermally activated conduction in the extended states and hopping process in the localized tail states. However, the interpretation of the transport data is not straightforward and the pressure dependence of the thermoelectric power will be needed to complete the picture. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LIMA (Laser-induced Ion Mass Analysis) is a new technique capable of compositional analysis of thin films and surface regions. Under UHV conditions a focused laser beam evaporates and ionizes a microvolume of specimen material from which a mass spectrum is obtained. LIMA has been used to examine a range of thin film materials with applications in electronic devices. The neutral photon probe avoids charging problems, and low conductivity materials are examined without prior metallization. Analyses of insulating silicon oxides, nitrides, and oxynitrides confirm estimates of composition from infrared measurements. However, the hydrogen content of hydrogenated amorphous silicon (a-Si : H) found by LIMA shows no correlation with values given by infrared absorption analysis. Explanations are proposed and discussed. © 1985.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the electronic structure of defects in aSi:H, aGaAs and aSi3N4, emphasising in aSi:H the doping mechanism, the evidence that its dangling bond defect has a small electron-lattice coupling and a positive correlation energy, and possible atomic mechanisms for the Staebler-Wronski effect. © 1985.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis provides an overall review and introduction to amorphous semiconductors, followed by a brief discussion on the important structural models proposed for chalcogenide glasses and their electrical, optional and thermal properties. It also gives a brief description of the Physics of thin films, ion implantation and Photothermal Deflection Spectroscopy. A brief description of the experimental setup of a photothermal deflection spectrometer and the details of the preparation and optical characterization of the thin film samples. It deals with the employment of the subgap optional absorption measurement by PDS to characterize the defects, amorphization and annealing behavior in silicon implanted with B+ ions and the profiles of ion range and vacancy distribution obtained by the TRIM simulation. It reports the results of all absorption measurements by PDS in nitrogen implanted thin film samples of Ge-Se and As-Se systems

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study of the effect of bismuth dopant on the electronic transport properties of the amorphous semiconductors Ge20S80-xBix under high pressure (up to 140 kbar) has been carried out down to liquid-nitrogen temperature. The experiments reveal that the electronic conduction is strongly composition dependent and is thermally activated with a single activation energy at all pressures and for all compositions. A remarkable resemblance between the electronic conduction process, x-ray diffraction studies, and differential thermal analysis results is revealed. It is proposed that the n-type conduction in germanium chalcogenides doped with a large Bi concentration is due to the effect of Bi dopants on the positive correlation energy defects present in germanium chalcogenides. The impurity-induced chemical modification of the network creates a favorable environment for such an interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A mille-feuille structured amorphous selenium (a-Se)-arsenic selenide (As2Se3) multi-layered thin film and a mixed amorphous Se-As2Se3 film is compared from a durability perspective and photo-electric perspective. The former is durable to incident laser induced degradation after numerous laser scans and does not crystallise till 105 of annealing, both of which are improved properties from the mixed evaporated film. In terms of photo-electric properties, the ratio between the photocurrent and the dark current improved whereas the increase of the dark current was higher than that of As2Se3 due to the unique current path developed within the mille-feuille structure. Implementing this structure into various amorphous semiconductors may open up a new possibility towards structure-sensitive amorphous photoconductors. © 2013 Elsevier B.V.