521 resultados para Amaryllidaceae alkaloids
Resumo:
Described herein is the chemoenzymatic total synthesis of several Amaryllidaceae constituents and their unnatural C-I analogues. A new approach to pancratistatin and related compounds will be discussed along with the completed total synthesis of 7 -deoxypancratistatin and trans-dihydrolycoricidine. Evaluation of all new C-l analogues as cancer cell growth inhibitory agents is described. The enzymatic oxidation of dibromobenzenes by Escherichia coli 1M 109 (pDTG60 1) is presented along with conversion of their metabolites to (-)-conduritol E. Investigation into the steric and functional factors governing the enzymatic dihydroxylation of various benzoates by the same organism is also discussed. The synthetic utility of these metabolites is demonstrated through their conversion to pseudo-sugars, aminocyclitols, and complex bicyclic ring systems. The current work on the total synthesis of some morphine alkaloids is also presented. Highlighted will be the synthesis of several model systems related to the efficient total synthesis of thebaine.
Resumo:
In einer Ex-chiral-Pool-Synthese konnten wichtige optisch aktive Vorstufen für die Substanzklasse der Crinan-Alkaloide hergestellt werden. Diese Alkaloid-Klasse zeichnet sich durch ihre zahlreichen physiologischen Eigenschaften (Antitumor-, Antiviral-, Antimalaria-Aktivität etc.) aus und stellt deshalb ein interessantes Syntheseziel für eine Totalsynthese dar. Ausgehend von der chiralen Information des L-Serins konnte dabei das quartäre, arylierte Kohlenstoffzentrum gezielt durch eine Stetter-Reaktion (Umpolungs-Reaktion) aufgebaut werden. Der Aufbau des dafür benötigten trisubstituierten Olefins wurde über eine Horner-Olefinierung und Heck-Cyclisierung erreicht. Hierbei konnten Bedingungen erarbeitet werden, die eine racemisierungsfreie Synthese gewährleisten.
Resumo:
In an attempt to reveal the relationships between alkaloid biosynthesis and phylogeny, we investigated by GC–MS the alkaloid patterns of 22 species and 3 hybrids (from 45 locations) from seven main sections of the genus Narcissus (Amaryllidaceae). The results indicate that the first alkaloids to evolve in the genus Narcissus were of the lycorine- and homolycorine-type. The alkaloid pattern of the Nevadensis section supports its recent separation from the Pseudonarcissus section. The plants of Narcissus pallidulus (Ganymedes section) show a predominance of Sceletium-type compounds, which are quite rare in the Amaryllidaceae family. Two successful evolutionary strategies involving alkaloid biosynthesis and leading to an expansion in taxa and occupied area were determined. Firstly, a diversification of alkaloid patterns and a high alkaloid concentration in the organs of the large Narcissus species (in the Pseudonarcissus section) resulted in an improved chemical defence in diverse habitats. Secondly, both plant size and alkaloid biosynthesis were reduced (in the Bulbocodium and Apodanthi sections) relegated to dry pastures and rocky places.
Resumo:
In this work particular attention was given to the study of secondary metabolites produced by some plants belonging to the Amaryllidaceae family, in the specific case isoquinoline alkaloids. At the first instance were characterized both qualitatively and quantitatively three different plants belonging to Amaryllidaceae family, such as: Crinum angustum Steud., Pancratium illyricum L., and Leucojum nicaeense Ard. The alkaloids extracts obtained were separately tested against enzymes involved in specific diseases or liable in multifactorial pathologies, like: MMPs, AChE,and PPO. From leaves extract of P.illyricum was isolated a new compound, 11α-hydroxy-O-methylleucotamine, with important role in AChE inbition. Considering the protection role against external bodies carried out by these metabolites in plant, extracts were also assayed against ATCC microorganisms and clinical isolates. Plants with promising pharmacological activities have been the basis for development of in vitro plant models.
Resumo:
Four new acylated pteridine alkaloids, duramidines A-D, two new acylated thymidine alkaloids, leptoclinidines A and B, two new 1-acylglyceryl-3-(O- carboxyhydroxymethylcholine) alkaloids, durabetaines A and B, three new 1,3-dimethyl-5-methylsulfanylimidazole alkaloids, leptoclinidamines D-F, and the known alkaloids leptoclinidamines B and C and 6-bromo-1H-indolo-3-yl-oxoacetic acid methyl ester were isolated from the Australian ascidian Leptoclinides durus. The duramidines are the first pteridine alkaloids, possessing a three carbon side chain esterified at C-1′ with a 4-hydroxy-2′- methoxycinnamic acid, and are either hydroxylated or sulfated at C-2′. The leptoclinidines are the first 3′-indole-3-carboxylic acid ester derivatives of thymidine to be reported in the literature. The durabetaines are the first glyceryl-3-(O-carboxyhydroxymethylcholine) alkaloids to be reported from an animal source and are also the only known derivatives from this class to be acylated with aromatic carboxylic acids. MS and NMR data analysis established the structures of the new compounds. All compounds were shown to be inactive when tested for cytotoxic activity against prostate (LNCaP) and breast (MDA-MB-231) cancer cell lines and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus.
Resumo:
Mass-guided fractionation of the MeOH extract from a specimen of the Australian marine sponge Hyrtios sp. resulted in the isolation of two new tryptophan alkaloids, 6-oxofascaplysin (2), and secofascaplysic acid (3), in addition to the known metabolites fascaplysin (1) and reticulatate (4). The structures of all molecules were determined following NMR and MS data analysis. Structural ambiguities in 2 were addressed through comparison of experimental and DFT-generated theoretical NMR spectral values. Compounds 1–4 were evaluated for their cytotoxicity against a prostate cancer cell line (LNCaP) and were shown to display IC50 values ranging from 0.54 to 44.9 μM.
Resumo:
Chemical investigations of the Australian marine sponge Ecionemia geodides resulted in the isolation of two new pyridoacridine alkaloids, ecionines A (1) and B (2), along with the previously isolated marine natural products, biemnadin (3) and meridine (4). Compounds 1 and 2 both contain an imine moiety, which is rare for the pyridoacridine structure class. The chemical structures of 1 and 2 were determined by extensive 1D and 2D NMR and MS data analyses. All compounds were tested against a panel of human bladder cancer cell lines, the increasingly metastatic TSU-Pr1 series (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1- B2) and the superficial bladder cancer cell line 5637. Ecionine A (1) displayed cytotoxicity against all cell lines, with IC50 values ranging from 3 to 7 mM. This is the first report of chemistry from the sponge genus Ecionemia.
Resumo:
In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4′-hydroxy-6α-acetoxyanopterine (2), 4′-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7β-hydroxyanopterine (6), 7β,4′-dihydroxyanopterine (7), and 7β-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1–8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1–8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1–8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.
Resumo:
Crotalaria species containing hepatotoxic pyrrolizidine alkaloids grow widely in pastures in northern Australia and have sporadically poisoned grazing livestock. The diverse Crotalaria taxa present in these pastures include varieties, subspecies, and chemotypes not previously chemically examined. This paper reports the pyrrolizidine alkaloid composition and content of 24 Crotalaria taxa from this region and assesses the risk of poisoning in livestock consuming them. Alkaloids present in C. goreensis, C. aridicola subsp. densifolia, and C. medicaginea var. neglecta lack the esterified 1,2-unsaturated functionality required for pyrrole adduct formation, and these taxa are not hepatotoxic. Taxa with high levels of hepatotoxic alkaloids, abundance, and biomass pose the greatest risk to livestock health, particularly C. novae-hollandiae subsp. novae-hollandiae, C. ramosissima, C. retusa var. retusa, and C. crispata. Other species containing moderate alkaloid levels, C. spectabilis and C. mitchellii, also pose significant risk when locally abundant.
Resumo:
This chapter describes poisoning associated with consumption of pyrrolizidine alkaloid (PA)-containing plants (Crotalaria spp., Heliotropium spp. and Senecio spp.) by cattle and horses in rangelands of northern Australia, as well as the risks for meat quality of PA residues and potential health hazards to consumers.
Resumo:
Novel molecular matrices have been derived from coumarin-4-acetic acids and beta-phenylethylamines using the Bischler-Napieralski protocol which has led to the synthesis of analogues of tetrahydropapaverine in which the dimethoxybenzene moiety has been replaced by substituted coumarins. One carbon homologation has led to cyclization at the C3 position of coumarin generating the protoberberine skeleton. Structures have been confirmed by diffraction studies. The results showed that compounds 6e, 6f, 7e and 7f were found to be very effective against DNA samples of Gram positive bacterium Staphylococcus aureus and fungus Aspergillus niger. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The concept of carbocycle-heterocycle equivalency has been utilised to assemble the framework of fawcettimine-serratinine group of alkaloids from 1,5-cyclooctadiene through a common tricarbocyclic intermediate 3.
Resumo:
A versatile fungus isolated in our laboratory and identified as Mucor piriformis has been shown to effect novel and preparatively useful transformations in steroids and morphine alkaloids. The organism very effectively carries out hydroxylation of various C-19 and C-21 steroids at 7 and 14-positions. Although the organism is capable of catalysing hydroxylation at 6 beta and 11 alpha-positions, these are not the major activities. The 14 alpha-hydroxylase appears to have a broad substrate specificity. However, steroids with a bulky substitution at C-17 alpha-position or without the 4-en-3-one group are not accepted as substrates by the 14 alpha-hydroxylase system. Studies have demonstrated how various C-19 and C-21 steroids can be modified to yield new structures which are either difficult to prepare by traditional methods or hitherto unknown. The organism also very efficiently and selectively carries out the N-dealkylation of thebaine and its N-variants. Interestingly, the nor-compound formed does not get further metabolized. Since thebaine is very often used as a starting material to synthesize various morphine agonists as well as antagonists, and one of the steps involved in their preparation is the N-dealkylation reaction, the microbial process could certainly offer an alternative approach.
Resumo:
An enantiospecific total synthesis of indole alkaloids eburnamonine, aspidospermidine and quebrachamine is described from lactic acid. Synthesis of all three alkaloids is accomplished from a single chiral building block. Johnson-Claisen rearrangement of a chiral allyl alcohol is the main feature for the installation of the required quaternary centre.