997 resultados para Almost periodic solution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of asymptotically almost periodic classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations which arise in the study of heat conduction in fading memory material is considered. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider distributions u is an element of S'(R) of the form u(t) = Sigma(n is an element of N) a(n)e(i lambda nt), where (a(n))(n is an element of N) subset of C and Lambda = (lambda n)(n is an element of N) subset of R have the following properties: (a(n))(n is an element of N) is an element of s', that is, there is a q is an element of N such that (n(-q) a(n))(n is an element of N) is an element of l(1); for the real sequence., there are n(0) is an element of N, C > 0, and alpha > 0 such that n >= n(0) double right arrow vertical bar lambda(n)vertical bar >= Cn(alpha). Let I(epsilon) subset of R be an interval of length epsilon. We prove that for given Lambda, (1) if Lambda = O(n(alpha)) with alpha < 1, then there exists epsilon > 0 such that u vertical bar I(epsilon) = 0 double right arrow u 0; (2) if Lambda = O(n) is uniformly discrete, then there exists epsilon > 0 such that u vertical bar I(epsilon) = 0 double right arrow u 0; (3) if alpha > 1 and. is uniformly discrete, then for all epsilon > 0, u vertical bar I(epsilon) = 0 double right arrow u = 0. Since distributions of the above mentioned form are very common in engineering, as in the case of the modeling of ocean waves, signal processing, and vibrations of beams, plates, and shells, those uniqueness and nonuniqueness results have important consequences for identification problems in the applied sciences. We show an identification method and close this article with a simple example to show that the recovery of geometrical imperfections in a cylindrical shell is possible from a measurement of its dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the existence and uniqueness of pseudo-almost periodic solutions for a first-order abstract functional differential equation with a linear part dominated by a Hille-Yosida type operator with a non-dense domain. (C) 2009 Published by Elsevier Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is devoted to the study of the class of continuous and bounded functions f : [0, infinity] -> X for which exists omega > 0 such that lim(t ->infinity) (f (t + omega) - f (t)) = 0 (in the sequel called S-asymptotically omega-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically omega-periodic functions. We also study the existence of S-asymptotically omega-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In [Haiyin Gao, Ke Wang, Fengying Wei, Xiaohua Ding, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Applications 7 (2006) 1268-1283, Lemma 2.1] it is established that a scalar S-asymptotically to-periodic function (that is, a continuous and bounded function f : [0, infinity) -> R such that lim(t ->infinity)(f (t + omega) - f (t)) = 0) is asymptotically omega-periodic. In this note we give two examples to show that this assertion is false. (C) 2008 Elsevier Ltd. Ail rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A bounded continuous function it u : [0, infinity) -> X is said to be S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. This paper is devoted to study the existence and qualitative properties of S-asymptotically omega-periodic mild solutions for some classes of abstract neutral functional differential equations with infinite delay, Furthermore, applications to partial differential equations are given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper considers the existence and uniqueness of almost automorphic mild solutions to some classes of first-order partial neutral functional-differential equations. Sufficient conditions for the existence and uniqueness of almost automorphic mild solutions to the above-mentioned equations are obtained. As an application, a first-order boundary value problem arising in control systems is considered. (C) 2007 Elsevier Ltd. All fights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has been shown that in reality at least two general scenarios of data structuring are possible: (a) a self-similar (SS) scenario when the measured data form an SS structure and (b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random sequences that are almost periodic with respect to each other. In the second case it becomes possible to describe their behavior and express a part of their randomness quantitatively in terms of the deterministic amplitude–frequency response belonging to the generalized Prony spectrum. This possibility allows us to re-examine the conventional concept of measurements and opens a new way for the description of a wide set of different data. In particular, it concerns different complex systems when the ‘best-fit’ model pretending to be the description of the data measured is absent but the barest necessity of description of these data in terms of the reduced number of quantitative parameters exists. The possibilities of the proposed approach and detection algorithm of the QP processes were demonstrated on actual data: spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested methodology allows revising the accepted classification of different incommensurable and self-affine spatial structures and finding accurate interpretation of the generalized Prony spectroscopy that includes the Fourier spectroscopy as a partial case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider an autonomous differential system in Rn with a periodic orbit and we give a new method for computing the characteristic multipliers associated to it. Our method works when the periodic orbit is given by the transversal intersection of n ¡ 1 codimension one hypersurfaces and is an alternative to the use of the first order variational equations. We apply it to study the stability of the periodic orbits in several examples, including a periodic solution found by Steklov studying the rigid body dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we study the periodic orbits of the Hamiltonian system with the Armburster-Guckenheimer Kim potential and its C1 non-integrability in the sense of Liouville-Arnold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.