EXISTENCE OF S-ASYMPTOTICALLY omega-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS


Autoria(s): HENRIQUEZ, Hernan R.; PIERRI, Michelle; TABOAS, Placido
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

19/10/2012

19/10/2012

2008

Resumo

A bounded continuous function it u : [0, infinity) -> X is said to be S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. This paper is devoted to study the existence and qualitative properties of S-asymptotically omega-periodic mild solutions for some classes of abstract neutral functional differential equations with infinite delay, Furthermore, applications to partial differential equations are given.

FONDECYT[1050314]

Identificador

BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, v.78, n.3, p.365-382, 2008

0004-9727

http://producao.usp.br/handle/BDPI/20691

10.1017/S0004972708000713

http://dx.doi.org/10.1017/S0004972708000713

Idioma(s)

eng

Publicador

AUSTRALIAN MATHEMATICS PUBL ASSOC INC

Relação

Bulletin of the Australian Mathematical Society

Direitos

restrictedAccess

Copyright AUSTRALIAN MATHEMATICS PUBL ASSOC INC

Palavras-Chave #neutral functional differential equations #almost periodic functions #FUNCTIONAL-DIFFERENTIAL EQUATIONS #UNBOUNDED DELAY #INFINITE DELAY #HEAT CONDUCTION #MEMORY #Mathematics
Tipo

article

original article

publishedVersion