993 resultados para Almost Upper Semicontinuous Multivalued Mapping
Resumo:
In the present paper, we establish two fixed point theorems for upper semicontinuous multivalued mappings in hyperconvex metric spaces and apply these to study coincidence point problems and minimax problems. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
In the present paper, we study the quasiequilibrium problem and generalized quasiequilibrium problem of generalized quasi-variational inequality in H-spaces by a new method. Some new equilibrium existence theorems are given. Our results are different from corresponding given results or contain some recent results as their special cases. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.
Resumo:
AMS subject classification: Primary 34A60, Secondary 49J52.
Resumo:
∗Partially supported by Grant MM 409/94 of the Mininstry of Education, Science and Technology, Bulgaria. ∗∗Partially supported by Grants MM 521/95, MM 442/94 of the Mininstry of Education, Science and Technology, Bulgaria.
Resumo:
In this paper, we present a new unified approach and an elementary proof of a very general theorem on the existence of a semicontinuous or continuous utility function representing a preference relation. A simple and interesting new proof of the famous Debreu Gap Lemma is given. In addition, we prove a new Gap Lemma for the rational numbers and derive some consequences. We also prove a theorem which characterizes the existence of upper semicontinuous utility functions on a preordered topological space which need not be second countable. This is a generalization of the classical theorem of Rader which only gives sufficient conditions for the existence of an upper semicontinuous utility function for second countable topological spaces. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Partially supported by Sapientia Foundation.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
Single-basined preferences generalize single-dipped preferences by allowing for multiple worst elements. These preferences have played an important role in areas such as voting, strategy-proofness and matching problems. We examine the notion of single-basinedness in a choice-theoretic setting. In conjunction with independence of irrelevant alternatives, single-basined choice implies a structure that conforms to the motivation underlying our definition. We also establish the consequenes of requiring single-basined choice correspondences to be upper semicontinuous, and of the revealed preference relation to be Suzumura consistent. Journal of Economic Literature.
Resumo:
In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We consider attractors A(eta), eta epsilon [0, 1], corresponding to a singularly perturbed damped wave equation u(tt) + 2 eta A(1/2)u(t) + au(t) + Au = f (u) in H-0(1)(Omega) x L-2 (Omega), where Omega is a bounded smooth domain in R-3. For dissipative nonlinearity f epsilon C-2(R, R) satisfying vertical bar f ``(s)vertical bar <= c(1 + vertical bar s vertical bar) with some c > 0, we prove that the family of attractors {A(eta), eta >= 0} is upper semicontinuous at eta = 0 in H1+s (Omega) x H-s (Omega) for any s epsilon (0, 1). For dissipative f epsilon C-3 (R, R) satisfying lim(vertical bar s vertical bar) (->) (infinity) f ``(s)/s = 0 we prove that the attractor A(0) for the damped wave equation u(tt) + au(t) + Au = f (u) (case eta = 0) is bounded in H-4(Omega) x H-3(Omega) and thus is compact in the Holder spaces C2+mu ((Omega) over bar) x C1+mu((Omega) over bar) for every mu epsilon (0, 1/2). As a consequence of the uniform bounds we obtain that the family of attractors {A(eta), eta epsilon [0, 1]} is upper and lower semicontinuous in C2+mu ((Omega) over bar) x C1+mu ((Omega) over bar) for every mu epsilon (0, 1/2). (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We consider the family of singularly nonautonomous plate equation with structural dampingu(tt) + a(t, x)u(t) - Delta u(t) + (-Delta)(2)(u) + lambda u = f(u),in a bounded domain Omega subset of R(n), with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in H(0)(2)(Omega) x L(2)(Omega) and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.