268 resultados para Algorithmische Geometrie
Resumo:
Ein wesentlicher Einflussfaktor auf die Bauteilqualität und Prozessgüte bei der generativen Herstellung von Prototypen ist die Orientierung der Bauteile. So kann eine optimierte Ausrichtung den Treppenstufeneffekt (Staircasing) sowie den Curling-Effekt minimieren und somit die Oberflächenqualität bzw. die Bauteilgenauigkeit erhöhen oder die Berücksichtigung von Formtoleranzen (z.B. Rundheit) ermöglichen. Des Weiteren können verschiedene Bauteilausrichtungen unterschiedliche Ausführungen von Stützkonstruktionen bewirken und die Bauteilstabilität beeinflussen. Diese und ähnliche Wechselwirkungen gilt es bei der Auswahl einer geeigneten Bauteilorientierung für RP-Anwendungen zu berücksichtigen. Dieser Vortrag stellt ein generisches System vor, welches unter Berücksichtigung der genannten Einflussfaktoren sowie weiterer Effekte eine rechnergestützte Optimierung der Bauteilorientierung durchführt. Neben der weiterhin notwendigen Erfahrung der Anwender zur endgültigen Festlegung der fallabhängigen Bauteilausrichtung liefert das System Vorschläge auf Basis einer intensiven Geometrieanalyse, die eine entsprechende Datenaufbereitung im Rahmen der Prozessplanung unterstützen.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2013
Resumo:
Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit derAutomatisierung von Berechnungen virtuellerStrahlungskorrekturen in perturbativen Quantenfeldtheorien.Die Berücksichtigung solcher Korrekturen aufMehrschleifen-Ebene in der Störungsreihenentwicklung istheute unabdingbar, um mit der wachsenden Präzisionexperimenteller Resultate Schritt zu halten. Im allgemeinen kinematischen Fall können heute nur dieEinschleifen-Korrekturen als theoretisch gelöst angesehenwerden -- für höhere Ordnungen liegen nur Teilergebnissevor. In Mainz sind in den letzten Jahren einige neuartigeMethoden zur Integration von Zweischleifen-Feynmandiagrammenentwickelt und im xloops-Paket in algorithmischer Formteilweise erfolgreich implementiert worden. Die verwendetenVerfahren sind eine Kombination exakter symbolischerRechenmethoden mit numerischen. DieZweischleifen-Vierbeinfunktionen stellen in diesem Rahmenein neues Kapitel dar, das durch seine große Anzahl vonfreien kinematischen Parametern einerseits leichtunüberschaubar wird und andererseits auch auf symbolischerEbene die bisherigen Anforderungen übersteigt. Sie sind ausexperimenteller Sicht aber für manche Streuprozesse vongroßem Interesse. In dieser Arbeit wurde, basierend auf einer Idee von DirkKreimer, ein Verfahren untersucht, welches die skalarenVierbeinfunktionen auf Zweischleifen-Niveau ganz ohneRandbedingungen an den Parameterraum zu integrierenversucht. Die Struktur der nach vier Residuenintegrationenauftretenden Terme konnte dabei weitgehend geklärt und dieKomplexität der auftretenden Ausdrücke soweit verkleinertwerden, dass sie von heutigen Rechnern darstellbar sind.Allerdings ist man noch nicht bei einer vollständigautomatisierten Implementierung angelangt. All dies ist dasThema von Kapitel 2. Die Weiterentwicklung von xloops über Zweibeinfunktionenhinaus erschien aus vielfältigen Gründen allerdings nichtmehr sinnvoll. Im Rahmen dieser Arbeit wurde daher einradikaler Bruch vollzogen und zusammen mit C. Bauer und A.Frink eine Programmbibliothek entworfen, die als Vehikel fürsymbolische Manipulationen dient und es uns ermöglicht,übliche symbolische Sprachen wie Maple durch C++ zuersetzen. Im dritten Kapitel wird auf die Gründeeingegangen, warum diese Umstellung sinnvoll ist, und dabeidie Bibliothek GiNaC vorgestellt. Im vierten Kapitel werdenDetails der Implementierung dann im Einzelnen vorgestelltund im fünften wird sie auf ihre Praxistauglichkeituntersucht. Anhang A bietet eine Übersicht über dieverwendeten Hilfsmittel komplexer Analysis und Anhang Bbeschreibt ein bewährtes numerisches Instrument.
Resumo:
Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
La presente tesi tratta la progettazione e la simulazione via software di geometrie di antenne da realizzare direttamente su Printed Circuit Board (PCB) per schede di trasmissione dati wireless Ultra Wide Band. L’obiettivo principale di questo studio è la realizzazione di un prototipo per impieghi biomedici umani (ad esempio trasmissione di dati provenienti da un ECG). Lo scopo del lavoro svolto è quello di trovare la miglior soluzione di integrazione per un’antenna il più possibile compatta da realizzare poi direttamente sul substrato dove verrà stampato il circuito del trasmettitore stesso. L’antenna verrà quindi realizzata esclusivamente attraverso microstrisce conduttrici (le medesime che formeranno i collegamenti tra i vari componenti del circuito) prendendo in considerazione le grandezze parassite di ogni conduttore, quali resistenza, induttanza, capacità ecc. In conclusione, il circuito di trasmissione wireless completo di antenna sopra descritto è attualmente in fase di realizzazione e nel prossimo futuro verrà testato in laboratorio.
Resumo:
von Franz Matzek
Resumo:
von Georg Heinrich Hollenberg
Resumo:
Max Lederer
Resumo:
bearb. von J. Büsser
Resumo:
Mode of access: Internet.