54 resultados para Alginite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cenozoic sediments sampled in ODP Leg 104 on the Vøring Plateau show a distinct variability of the total organic carbon content (TOC) and the accumulation rates of TOC. Based on the geochemical and organic-petrographic characterization of the sedimentary organic matter (OM), the allochthonous and autochthonous proportion of the OM could be quantified. The results clearly demonstrate that high TOC percentages and TOC accumulation rates in Cenozoic sediment sections display a generally high input of allochthonous organic matter. Oxidized and partly well-rounded organic particles built up the main portion of OM within the Miocene, TOC-rich sediments. The most probable source of this oxidized OM are reworked sediments from the Scandinavian shelf. Changes in the input of these organic particles are to some degree correlative with sea-level changes. The Cenozoic accumulation of autochthonous OM is low and does not reveal a clear variation during the Miocene and early Pliocene. In spite of a high accumulation rate of biogenic opal during the Early Miocene, the accumulation rate of autochthonous TOC is low. The autochthonous particle assemblage is dominated by relatively inert OM, like dinoflagellate cysts. This points to an intensive biological and/or early diagenetic degradation of the marine OM under well oxidized bottom water conditions during the last 23 Myr. Nevertheless, a continuation of marine OM degradation during later stages of diagenesis cannot be excluded. A prominent dominance of allochthonous OM over autochthonous is documented with the beginning of the Pliocene. At 2.45 Ma the episodic occurrence of ice-rafted, thermally mature OM reflects the onset of the glacial erosion of Mesozoic, coal and black shale bearing sediments on the Scandinavian and Barents Sea shelves. The first occurrence of these, in view of the actual burial depth, thermally overmature OM particles is, therefore, a marker for the beginning of the strong Scandinavian glaciation and the advance of the glacial front toward the shelves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three lower Barremian to middle/upper Cenomanian samples from DSDP Hole 549 and three lower Cenomanian to lower Maestrichtian samples from DSDP Hole 550B were investigated by organic geochemical and organic petrographic methods. The samples came from wells drilled in the area of the Goban Spur in the northeastern Atlantic; they represent gray to greenish gray carbonaceous mud or siltstones from the deeper parts of the Cretaceous sequences penetrated and light-colored chalks from the shallower ones. The total amount of organic carbon is below 1% in all samples; it is especially low in the Cenomanian to Maestrichtian chalks. Terrigenous organic matter predominates; only the Barremian sample shows a moderate number of marine phytoclasts. As indicated by several parameters, the maturity of the organic matter is low, corresponding to about 0.4% vitrinite reflectance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantity and quality of organic carbon of Eocene to Holocene sediments from ODP Sites 645, 646, and 647 were investigated to reconstruct depositional environments. Results were based on organic-carbon and nitrogen determinations, Rock-Eval pyrolysis, and kerogen microscopy. The sediments at Site 645 in Baffin Bay are characterized by relatively high organic-carbon values, most of which range from 0.5% to almost 3%, with maximum values in the middle Miocene. Distinct maxima of organic-carbon accumulation rates occur between 18 and 12.5 Ma and between 3.4 and 0 Ma. At Sites 646 and 647 in the Labrador Sea, organic-carbon contents vary between 0.1% and 0.75%. Cyclic 'Milankovitch-type' changes in organic-carbon deposition imply climate-controlled mechanisms that cause these fluctuations. The composition of organic matter at Site 645 is dominated by terrigenous components throughout the entire sediment sequence. An increased content of marine organic carbon was recorded only in the late-middle Miocene. At Sites 646 and 647, the origin of the organic matter most probably is marine. Oceanic paleoproductivity values were estimated, based on the amount of marine organic carbon. During most of the Neogene time interval at Site 645, productivity was low, i.e., similar or less than that measured in Baffin Bay today. Higher values of up to 150 (200) gC/m**2/y may have occurred only in the Miocene. At Sites 646 and 647, mean paleoproductivity values vary between 90 and 170 gC/m**2/y; i.e., these are also similar to those measured in the Labrador Sea today. Lower values of 40 to 70 gC/m**2/y were estimated for the early Eocene and (middle) Miocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miocene to Quaternary sediments from the Oki Ridge (Site 798) and the Kita-Yamato Trough (Site 799) in the Japan Sea contain organic carbon ranging from about 0.6% in light-colored layers to almost 6% in dark layers. The organic matter consists of a variable mixture of marine and terrigenous contributions, the ratio of which is not correlated to the total organic carbon content. Marine organic particles clearly dominate in the deeper section of Hole 799B. The extractable bitumen is strongly dominated by long-chain alkenones from microalgae in the shallower sediments, whereas bishomohopanoic acid (C32) of eubacterial origin is the single most abundant compound in deeper samples. Normal alkanes and straight-chain carboxylic acids, both of which show a bimodal distribution with odd and even carbon-number predominance, respectively, are two other groups of compounds which are important constituents of the extracts. The deepest samples at Site 799 contain a considerable amount of short-chain components, which probably migrated upward from thermally more altered deeper sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic petrologic and geochemical analyses were performed on modern and Quaternary organic carbon-poor deep sea sediments from the Equatorial Atlantic. The study area covers depositional settings from the West African margin (ODP Site 959) through the Equatorial Divergence (ODP Site 663) to the pelagic Equatorial Atlantic. Response of organic matter (OM) deposition to Quaternary climatic cycles is discussed for ODP Sites 959 and 663. The results are finally compared to a concept established for fossil deep sea environments [Littke and Sachsenhofer, 1994 doi:10.1021/ef00048a041]. Organic geochemical results obtained from Equatorial Atlantic deep sea deposits provide new aspects on the distribution of sedimentary OM in response to continental distance, atmospheric and oceanographic circulation, and depositional processes controlling sedimentation under modern and past glacial-interglacial conditions. The inventory of macerals in deep sea deposits is limited due to mechanical breakdown of particles, degree of oxidation, and selective remineralization of labile (mostly marine) OM. Nevertheless, organic petrology has a great potential for paleoenvironmental studies, especially as a proxy to assess quantitative information on the relative abundance of marine vs. terrigenous OM. Discrepancies between quantitative data obtained from microscopic and isotopic (delta13Corg) analyses were observed depending on the stratigraphic level and depositional setting. Strongest offset between both records was found close to the continent and during glacial periods, suggesting a coupling with wind-born terrigenous OM from central Africa. Since African dust source areas are covered by C4 grass plants, supply of isotopically heavy OM is assumed to have caused the difference between microscopic and isotopic records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical and organic petrographic methods were used to study three Lower to middle Cretaceous sediment samples from Hole 535 in the southeastern Gulf of Mexico for organic matter contents and origin and level of maturation. All three samples contain mixed kerogen Type II/III organic matter with a maturity corresponding to about 0.4% vitrinite reflectance. The marine component increases with stratigraphic age, and microbial reworking of the organic matter is significant in each age. The lower two samples of Hauterivian to Valanginian age appear to be impregnated (or contaminated) with soluble polar organic compounds, but there is only a weak indication for the presence of more mature, nonindigenous hydrocarbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed organic geochemical investigations have been performed on sediment samples from upwelling Site 658 and nonupwelling Sites 657 and 659. The major objective of this study has been the relationship between organic carbon accumulation and paleoclimatic and paleoceanographic conditions in the upwelling area off northwest Africa during late Cenozoic times. The study is based on results from organic carbon, nitrogen, and hydrogen analyses, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry. In general, nonupwelling Sites 657 and 659 are characterized by low organic carbon values of less than 0.5%. At Site 657, four events of high organic carbon deposition (total organic carbon of 1%-3%) occur and represent turbidites and a slump interval. The upper Pliocene to Pleistocene sediments of upwelling Site 658 display high organic carbon contents of 0.5%-4%, with higher contents concentrated in the upper Pliocene. Accumulation rates of organic carbon vary between 0.1 and 0.5 gC/cm-**2/1000 yr, with maximum values between 3.5 and 3.1 Ma. Short-term cyclic ("Milankovitch-type") variations in organic carbon accumulation suggest climate-controlled mechanisms causing these fluctuations. The quality of organic matter at Site 658 is a mixture of kerogen type II and HI, with a dominance of the marine type. This is indicated by high hydrogen-index values of 200-400 mgHC/gC, low C/N ratios of 5-15, atomic H/C ratios of 1.0-1.5, and high amounts of marine macerals (alginite and liptodetrinite). We have estimated paleoproductivity for Sites 658 and 659 based on the amount of marine organic carbon. At open-marine Site 659, mean paleoproductivity varies between 20 and 50 gC/m**2/yr. At Site 658, mean paleoproductivity reaches high values of 160 to 320 gC/m**2/yr, very similar to those recorded in modern upwelling areas. The changes in productivity off northwest Africa are linked to changes in nutrient supply caused by both upwelling and fluvial input. The change from a dominantly humid climate to one characterized by fluctuations between humid and fully arid climates in northwest Africa occurs between 3.1 and 2.45 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microscopic studies reveal a predominance of terrestrial organic matter in sediments of Site 808. Terrestrial vitrinite and inertinite are more abundant (73% to 100%) than marine organic matter (alginite, 0% to 27%), which increases from open oceanic deposits of the Shikoku Basin sediments to sediments of the outer trench wedge. The abundance of terrestrial organic matter is also reflected through carbon isotope values of -23 per mil to -25.9 per mil. Mass accumulation rates of organic carbon are low in hemipelagic sediments of the Shikoku Basin (<0.2 g/cm**2/k.y.) but increase significantly in sediments of the Nankai Trench (0.2 to 1.7 g/cm**2/k.y.). Although the organic mass accumulation is high in sediments of the Nankai Trench, a comparison of sedimentation rates and total organic carbon suggests relative dilution of organic carbon through turbidite flows. Calculated marine paleoproductivity of organic carbon is low in sediments of the open ocean (Shikoku Basin) and increases closer to the shore (Nankai Trench). Thermal evolution of organic matter is obtained from vitrinite reflectance measurements. Two populations of vitrinites have been observed between 600 and 1234 mbsf. Reflectance values change with increasing depth and temperature in both groups of vitrinite (0.3% to 0.68% in group 1; 0.6% to 1% in group 2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that microscopic algae dominate in source material of organic matter of black shales, and admixture of residues of organisms and terrestrial humic material is contained. The main direction of source material transformation during syngenesis and sedimentogenesis is associated with jellofication resulting to formation of organic matter of significantly sapropelic type. Low reflectance of vitrinite and alginite from organic matter refer to the primary and secondary lignite stages of its carbonification. Significantly sapropel type of organic matter and low stage of carbonification are reliable criteria for assigning black shales to the category of potential oil source strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of 22 sediment samples of Cretaceous and Cenozoic age from DSDP Holes 603, 603B, and 603C at the continental rise off the northeastern American coast near Cape Hatteras was investigated by organic geochemical methods including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. An abundance of terrigenous organic matter, including larger coal particles (almost exclusively consisting of huminite/vitrinite macerals), is the dominant characteristic of the organofacies types at Site 603. Marine organic matter, mostly structurally degraded and in the form of fecal pellets, was preserved in the Valanginian laminated marls and in Cenomanian black claystone turbidites. Long-chain nalkanes reflect the terrigenous imprint in the nonaromatic hydrocarbon fractions, whereas a second maximum at lower carbon numbers in most cases is caused by the presence of more mature recycled organic matter. Abundant isoprenoid and steroid hydrocarbons were found in sediments containing mainly marine organic matter, whereas hopanoids reflect the ubiquitous microbial activity. The organic matter in the Site 603 sediments, in so far as it is not recycled, is thermally immature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty sediment samples from Tortonian to Pleistocene age of five ODP locations (Holes 650A, 651A, and 652A, and Sites 654 and 655) in the Marsili Basin, Vavilov Basin, and Sardinia Margin (Tyrrhenian Sea) were studied by organic geochemical methods including total organic carbon determination, Rock-Eval pyrolysis, bitumen extraction, pyrolysis-gas chromatography, and organic petrography. Six organic facies, including open ocean anoxia with variable terrestrial input, oxic open ocean, oxic tidal flat, mildly oxic lagoon, and anoxic lacustrine algal-bacterial mat environments, have been recognized in these sediments. The sediments below 500 m in Sardinia Margin are mature for significant hydrocarbon generation. Possible mature source-rock (Type I and IIB/III kerogen) and migrated bitumen occur in the deeper part of the section in Vavilov Basin and Sardinia Margin sediments. Sporadic sapropel formation observed in the studied Pliocene-Pleistocene sediment section is probably controlled by organic productivity due to nutrient supply by the rivers and terrestrial input associated with open ocean anoxia or anoxia caused by the material balance between rate of organic matter supplied by turbidites and organic matter consumption. Pliocene and Pleistocene sapropels are mostly immature and lie within Type II-III (precisely as IIA-IIB and IIB source rocks) kerogen maturation path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of upper Pliocene to Pleistocene sediment samples from DSDP Sites 582 and 583 (Nankai Trough, active margin off Japan) were investigated by organic geochemical methods including organic carbon determination, Rock- Eval pyrolysis, gas chromatography of extractable hydrocarbons, and kerogen microscopy. The organic carbon content is fairly uniform and moderately low (0.35 to 0.77%) at both sites, although accompanied by high sedimentation rates. The low organic matter concentrations are the result of the combined effect of several factors: low bioproductivity, oxic depositional environment, and dilution with lithogenic material. Organic petrography revealed a mixture of three maceral types: (1) fresh, green fluorescent alginites of aquatic origin probably transported by turbidites from the shelf edge, (2) gelified huminites and paniculate liptinites derived from the erosion of unconsolidated peat, and (3) highly reflecting inertinites derived from continental erosion. By a combination of organic petrography and Rock-Eval pyrolysis results, the organic matter is characterized as mainly type III kerogen with a slight tendency to a mixed type II-III. During Rock-Eval pyrolysis, a mineral matrix effect on the generated hydrocarbons was observed. The organic matter in all sediments has a low level of maturity (below 0.45% Rm) and has not yet reached the onset of thermal hydrocarbon generation according to several geochemical maturation parameters. This low maturity is in contrast to anomalously high extract yields at both sites and large hydrocarbon proportions in the extracts at Site 583. This contrast may be due to early generation of polar compounds and perhaps redistribution of hydrocarbons caused by subduction tectonics. Carbon isotope data of the interstitial hydrocarbon gases indicate their origin from bacterial degradation of organic matter, although only very few bacterially degraded maceral components were detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments in Arctic sea ice are important for erosion and redistribution and consequently a factor for the sediment budget of the Arctic Ocean. The processes leading to the incorporation of sediments into the ice are not understood in detail yet. In the present study, experiments on the incorporation of sediments were therefore conducted in ice tanks of The Hamburg Ship Model Basin (HSVA) in winter 1996/1997, These experiments showed that on average 75 % of the artificial sea-ice sediments were located in the brine-channel system. The sediments were scavenged from the water column by frazil ice. Sediments functioning as a nucleus for the formation of frazil ice were less important for the incorporation. Filtration in grease ice during relatively calm hydrodynamic conditions was probably an effective process to enrich sediments in the ice. Wave fields did not play an important role for the incorporation of sediments into the artificial sea ice. During the expedition TRANSDRIFT III (TDIII, October 1995), different types of natural, newly-formed sea ice (grease ice, nilas and young ice) were sampled in the inner Laptev Sea at the time of freeze-up. The incorporation of sediments took place during calm meteorological conditions then. The characteristics of the clay mineral assemblages of these sedirnents served as references for sea-ice sediments which were sampled from first-year drift ice in the outer Laptev Sea and the adjacent Arctic Ocean during the POLARSTERN expedition ARK-XI/1 (July-September 1995). Based on the clay mineral assemblages, probable incorporation areas for the sedirnents in first-year drift ice could be statistically reconstructed in the inner Laptev Sea (eastern, central, and Western Laptev Sea) as well as in adjacent regions. Comparing the amounts of particulate organic carbon (POC) in sea-ice sediments and in surface sediments from the shelves of potential incorporation areas often reveals higher values in sea-ice sediments (TDIII: 3.6 %DM; ARK-XI/1: 2.3 %DM). This enrichment of POC is probably due to the incorporation process into the sea ice, as could be deducted from maceral analysis and Rock-Eval pyrolysis. Both methods were applied in the present study to particulate organic material (POM) from sea-ice sediments for the first time. It was shown that the POM of the sea-ice sediments from the Laptev Sea and the adjacent Arctic Ocean was dominated by reworked, strongly fragmented, allochthonous (terrigenous) material. This terrigenous component accounted for more than 75 % of all counted macerals. The autochthonous (marine) component was also strongly fragmented, and higher in the sediments from newly-formed sea ice (24 % of all counted macerals) as compared to first-year drift ice (17 % of all counted macerals). Average hydroge indices confirmed this pattern and were in the transition zone between kerogen types II and III (TDIII: 275 mg KW/g POC; ARK-XI/1: 200 mg KW/g POC). The sediment loads quantified in natural sea ice (TDIII: 33.6 mg/l, ARK-XI/1: 49.0 mg/l) indicated that sea-ice sediments are an important factor for the sediment budget in the Laptev Sea. In particular during the incorporation phase in autumn and early winter, about 12 % of the sediment load imported annually by rivers into the Laptev Sea can be incorporated into sea ice and redistributed during calm meteorological conditions. Single entrainment events can incorporate about 35 % of the river input into the sea ice (ca. 9 x 10**6 t) and export it via the Transpolar Drift from the Eurasian shelf to the Fram Strait.