Facies and diagenesis of organic matter in sediments at DSDP Leg 87


Autoria(s): Mukhopadhyay, Prasanta K; Rullkötter, Jürgen; Schaefer, Rainer G; Welte, Dietrich Hugo
Cobertura

MEDIAN LATITUDE: 31.805601 * MEDIAN LONGITUDE: 133.883358 * SOUTH-BOUND LATITUDE: 31.775000 * WEST-BOUND LONGITUDE: 133.854300 * NORTH-BOUND LATITUDE: 31.835000 * EAST-BOUND LONGITUDE: 133.913800 * DATE/TIME START: 1982-06-28T00:00:00 * DATE/TIME END: 1982-07-08T00:00:00

Data(s)

15/11/1986

Resumo

A series of upper Pliocene to Pleistocene sediment samples from DSDP Sites 582 and 583 (Nankai Trough, active margin off Japan) were investigated by organic geochemical methods including organic carbon determination, Rock- Eval pyrolysis, gas chromatography of extractable hydrocarbons, and kerogen microscopy. The organic carbon content is fairly uniform and moderately low (0.35 to 0.77%) at both sites, although accompanied by high sedimentation rates. The low organic matter concentrations are the result of the combined effect of several factors: low bioproductivity, oxic depositional environment, and dilution with lithogenic material. Organic petrography revealed a mixture of three maceral types: (1) fresh, green fluorescent alginites of aquatic origin probably transported by turbidites from the shelf edge, (2) gelified huminites and paniculate liptinites derived from the erosion of unconsolidated peat, and (3) highly reflecting inertinites derived from continental erosion. By a combination of organic petrography and Rock-Eval pyrolysis results, the organic matter is characterized as mainly type III kerogen with a slight tendency to a mixed type II-III. During Rock-Eval pyrolysis, a mineral matrix effect on the generated hydrocarbons was observed. The organic matter in all sediments has a low level of maturity (below 0.45% Rm) and has not yet reached the onset of thermal hydrocarbon generation according to several geochemical maturation parameters. This low maturity is in contrast to anomalously high extract yields at both sites and large hydrocarbon proportions in the extracts at Site 583. This contrast may be due to early generation of polar compounds and perhaps redistribution of hydrocarbons caused by subduction tectonics. Carbon isotope data of the interstitial hydrocarbon gases indicate their origin from bacterial degradation of organic matter, although only very few bacterially degraded maceral components were detected.

Formato

application/zip, 4 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.802076

doi:10.1594/PANGAEA.802076

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Mukhopadhyay, Prasanta K; Rullkötter, Jürgen; Schaefer, Rainer G; Welte, Dietrich Hugo (1986): Facies and diagenesis of organic matter in Nankai Trough sediments, Deep Sea Drilling Project Leg 87A. In: Kagami, H; Karig, DE; Coulbourn, WT; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 87, 877-889, doi:10.2973/dsdp.proc.87.134.1986

Palavras-Chave #25-31; 27-29; 29; Alginite; Amorphous liptinite (sapropelinite I and II); Amporphous; Area; Area/locality; Bitum; Bitumen; C15+ aromatic; of extract; C15+ of Corg; C15+ saturated; of extract; Carbon, organic, total; Carbon Preference Index; Comment; CPI; Deep Sea Drilling Project; Depth; DEPTH, sediment/rock; DSDP; Element analyser CS, LECO; Event; Extract; Flow-blending extraction technique (Radke et al., 1978); Gas chromatography; HC; HI, HC/TOC; Hum comp; Humic compounds; Huminite/vitrinite; Huminite/vitrinite ratio; Huminite reflection; Huminite reflection, standard deviation; Humi refl; Humi refl std dev; Hydrocarbons; Hydrogen index, mass HC per unit mass total organic carbon; Including residue; of extract; Inertinite; Label; Liptinite; Liquid chromatography; Lithology; Lithology/composition/facies; mbsf; NSO fraction; NSO-fraction (fraction of polar compounds); ODP sample designation; of Corg; Of sclerotinite or semifusinite grain; OI, CO2/TOC; Oxygen index, mass CO2 per unit mass total organic carbon; Particulate liptinite A (phytoclasts and zooclasts); Particulate liptinite B (sporinite-cutinite-suberinite-resinite). #11 - mainly resinite & cutinite; #16 - mainly resinite; #18 - including 3% resinite; Peak area integration using a Kratos-Instem Datachrom II system; Period; PI; Pr/C17; Pr/C18; Pr/Phy; Pristane/n-heptadecane ratio; Pristane/n-octadecane; Pristane/Phytane ratio; Production index, S1/(S1+S2); Pyrolysis temperature maximum; Reflection, minimum; Refl min; Rock eval pyrolysis (Behar et al., 2001); Rock eval pyrolysis (Espitalié et al. 1977); Samp com; Sample code/label; Sample comment; Solid; Tmax; TOC
Tipo

Dataset